Skip to main content
Log in

Open-circuit respirometry: a historical review of portable gas analysis systems

  • Invited Review
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Scientists such as physiologists, engineers, and nutritionists have often sought to estimate human metabolic strain during daily activities and physical pursuits. The measurement of human metabolism can involve direct calorimetry as well as indirect calorimetry using both closed-circuit respirometry and open-circuit methods that can include diluted flow chambers and laboratory-based gas analysis systems. For field studies, methods involving questionnaires, pedometry, accelerometery, heart rate telemetry, and doubly labelled water exist, yet portable metabolic gas analysis remains the gold standard for most field studies on energy expenditure. This review focuses on research-based portable systems designed to estimate metabolic rate typically under steady-state conditions by critically examining each significant historical innovation. Key developments include Zuntz’s 1906 innovative system, then a significant improvement to this purely mechanical system by the widely adopted Kofranyi–Michaelis device in the 1940s. Later, a series of technical improvements: in electronics lead to Wolf’s Integrating Motor Pneumotachograph in the 1950s; in polarographic O2 cells in 1970–1980’s allowed on-line oxygen uptake measures; in CO2 cells in 1990s allowed on-line respiratory exchange ratio determination; and in advanced sensors/computing power at the turn of the century led to the first truly breath-by-breath portable systems. Very recent significant updates to the popular Cosmed and Cortex systems and the potential commercial release of the NASA-developed ‘PUMA’ system show that technological developments in this niche area are still incrementally advancing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

B × B:

Breath-by-breath

CO2 :

Carbon dioxide

CV:

Coefficient of variation

FIO2 :

Fraction of inspired oxygen

FEO2 :

Fraction of expired oxygen

FECO2 :

Fraction of expired carbon dioxide

GESV:

Gas exchange system validator

H2O:

Water

ICC:

Intraclass correlation coefficient

GPS:

Global positioning system

NDIR:

Non-dispersive infra-red

O2 :

Oxygen

PCO2 :

Partial pressure of carbon dioxide

PO2 :

Partial pressure of oxygen

RER:

Respiratory exchange ratio

SEM:

Standard error of measurement

TEM:

Technical error of measurement

\(\dot {V}\)O2 :

Oxygen uptake

\(\dot {V}\)CO2 :

Carbon dioxide production

References

  • Archiza B, Welch JF, Sheel AW (2017) Classical experiments in whole-body metabolism: closed-circuit respirometry. Eur J Appl Physiol 117:1929–1937

  • Atkinson G, Davison R, Nevill A (2005) Performance characteristics of gas analysis systems: what we know and what we need to know. Int J Sports Med 26:S2-10

    PubMed  Google Scholar 

  • Attinger A, Tuller C, Souren T, Tamm M, Schindler C, Brutsche MH (2006) Feasibility of mobile cardiopulmonary exercise testing. Swiss Med Wkly 136:13–18

    PubMed  Google Scholar 

  • Atwater WO, Benedict FG (1905) A respiration calorimeter with appliances for the direct determination of oxygen. Carnegie Institute of Washington, Washington

    Google Scholar 

  • Baldari C, Meucci M, Bolletta F, Gallotta MC, Emerenziani GP, Guidetti L (2015) Accuracy and reliability of COSMED K5 portable metabolic device versus simulating system. Sport Sci Health 11:S58

    Google Scholar 

  • Ballal M, Macdonald I (1982) An evaluation of the Oxylog as a portable device with which to measure oxygen consumption. Clin Phys Physiol Meas 3:57–65

    CAS  PubMed  Google Scholar 

  • Beaver WL, Wasserman K, Whipp BJ (1973) On-line computer analysis and breath-by-breath graphical display of exercise function tests. J Appl Physiol 34:128–132

    CAS  PubMed  Google Scholar 

  • Beijst C, Schep G, van-Breda E, Wijn PFF, van-Pul C (2013) Accuracy and precision of CPET equipment: A comparison of breath-by-breath and mixing chamber systems. J Med Eng Technol 37:35–42

    PubMed  Google Scholar 

  • Benammar M (1994) Techniques for measurement of oxygen and air-to-fuel ratio using zirconia sensors. A review. Meas Sci Technol 5:757–767

    CAS  Google Scholar 

  • Bleeker J, Hoogendoorn M (1969) A portable apparatus for continuous measurement of oxygen consumption during work. Acta Physiol Pharmacol Neerl 15:30–36

    Google Scholar 

  • Blessinger J, Sawyer B, Davis C, Irving BA, Weltman A, Gaesser G (2009) Reliability of the VmaxST portable metabolic measurement system. Int J Sports Med 30:22–26

    CAS  PubMed  Google Scholar 

  • Bolletta F, Meucci M, Emerenziani GP, Gallotta MC, Guidetti L, Baldari C (2016) Accuracy and reliability of the K5 portable metabolic system in micro-mixing chamber mode using a gas exchange simulator system. Sport Sci Health 12:S43

    Google Scholar 

  • Boutellier U, Kundig T, Gomez U, Pietsch P, Koller EA (1987) Respiratory phase detection and delay determination for breath-by-breath analysis. J Appl Physiol 62:837–843

    CAS  PubMed  Google Scholar 

  • Brehm MA, Harlaar J, Groepenhof H (2004) Validation of the portable VmaxST system for oxygen-uptake measurement. Gait Posture 20:67–73

    PubMed  Google Scholar 

  • Clark LC (1956) Monitor and control of blood and tissue oxygen tensions. ASAIO Trans 2:41–48

    Google Scholar 

  • Consolazio CF, Johnson RE, Pecora LJ (1963) Physiological measurements of metabolic functions in man. McGraw-Hill, New York

    Google Scholar 

  • Cotes J (1954) Ventilatory capacity at altitude and its relation to mask design. Proc R Soc Lond B Biol Sci 143:32–39

    CAS  PubMed  Google Scholar 

  • Crouter SE, Antczak A, Hudak JR, DellaValle DM, Haas JD (2006) Accuracy and reliability of the ParvoMedics TrueOne 2400 and MedGraphics VO2000 metabolic systems. Eur J Appl Physiol 98:139–151

    PubMed  Google Scholar 

  • Dal Monte A, Faina M, Leonardi L, Todaro A, Guidl G, Petrelli G (1989) II consumo massimo di ossígeno in telemetría. Rivista di Cultura Sportiva 15:35–44

    Google Scholar 

  • Darter BJ, Rodriguez KM, Wilken JM (2013) Test–retest reliability and minimum detectable change using the K4b2: oxygen consumption, gait efficiency, and heart rate for healthy adults during submaximal walking. Res Q Exerc Sport 84:223–231

    PubMed  PubMed Central  Google Scholar 

  • Despretz CM, Arago F, Gay-Lussac JL (1824) Recherches expérimentales sur les causes de la chaleur animale. Ann Chim Phys 26:337–364

    Google Scholar 

  • Dietrich DL (2013) NASA’s PUMA provides valuable patient data. Medical Design, http://m.medicaldesign.com/electronics/nasa-s-puma-provides-valuable-patient-data

  • Douglas CG (1911) A method for determining the total respiratory exchange in man. J Physiol (Lond) 42:17-18P

    Google Scholar 

  • Douglas CG (1956) The development of experimental methods for determining the energy expenditure of man. Proc Nutr Soc 15:72–77

    CAS  PubMed  Google Scholar 

  • Duffield R, Dawson B, Pinnington H, Wong P (2004) Accuracy and reliability of a Cosmed K4b2 portable gas analysis system. J Sci Med Sport 7:11–22

    CAS  PubMed  Google Scholar 

  • Dulong PL (1841) Mémoire sur la chaleur animale. Ann Chim Phys 1:440–455

    Google Scholar 

  • Durnin JVGA, Passmore R (1967) Energy, work and leisure. Heinemann Educational Books, London

    Google Scholar 

  • Edholm O, Weiner J (1981) Introduction to the history of human physiology. In: Edholm O, Weiner J (eds) the principles and practice of human physiology. Academic Press, London, pp 1–18

    Google Scholar 

  • Eley C, Goldsmith R, Layman D, Wright BM (1976) A miniature indicating and sampling electronic respirometer (Miser). J Physiol (Lond) 256 (Suppl):59-60P

  • Eley C, Goldsmith R, Layman D, Tan GL, Walker E, Wright BM (1978) A respirometer for use in the field for the measurement of oxygen consumption. ‘The Miser’, a miniature, indicating and sampling electronic respirometer. Ergonomics 21:253–264

    CAS  PubMed  Google Scholar 

  • Eriksson JS, Rosdahl H, Schantz P (2011) Validity of the Oxycon Mobile metabolic system under field measuring conditions. Eur J Appl Physiol 112:345–355

    Google Scholar 

  • Frankenfield DC (2010) On heat, respiration, and calorimetry. Nutrition 26:939–950

    PubMed  Google Scholar 

  • Friedman B, Frese F, Bartsch P (1998) Ergospirometriesysteme vs. Douglas-Bag-Methode: evaluation einer stationaren und einer portablen messeinheit. Dtsch Z Sportmed 49:67–70

    Google Scholar 

  • Geppert J, Zuntz N (1888) Ueber die regulation der athmung. Pflügers Archiv Eur J Physiol 42:189–245

    Google Scholar 

  • Gunga HC (2009) Nathan Zuntz: his life and work in the fields of high altitude physiology and aviation medicine. Academic Press, Burlington

    Google Scholar 

  • Haldane J (1892) A new form of apparatus for measuring the respiratory exchange of animals. J Physiol (Lond) 13:419–430

    CAS  Google Scholar 

  • Harrison MH, Brown GA, Belyavin AJ (1982) The ‘Oxylog’: an evaluation. Ergonomics 25:809–820

    CAS  PubMed  Google Scholar 

  • Hart JD, Withers RT (1996) The calibration of gas volume measuring devices at continuous and pulsatile flows. Aust J Sci Med Sport 28:61–65

    CAS  PubMed  Google Scholar 

  • Hausswirth C, Bigard A-X, Le Chevalier J-M (1997) The Cosmed K4 telemetry system as an accurate device for oxygen uptake measurements during exercise. Int J Sports Med 28:449–453

    Google Scholar 

  • Henry C (2005) Basal metabolic rate studies in humans: measurement and development of new equations. Public Health Nutr 8:1133–1152

    CAS  PubMed  Google Scholar 

  • Hill D (1981) Instrumentation for physiological measurements. In: Edholm O, Weiner J (eds) Principles and practice of human physiology. Academic Press, London, pp 529–577

    Google Scholar 

  • Hodges LD, Brodie DA, Bromley PD (2005) Validity and reliability of selected commercially available metabolic analyzer systems. Scand J Med Sci Sports 15:271–279

    CAS  PubMed  Google Scholar 

  • Howson MG, Khamnei S, O’Connor DF, Robbins PA (1987) The properties of a turbine device for measuring respiratory volumes in man. J Physiol (Lond) 382:12P

    Google Scholar 

  • Hughson RL (2009) Oxygen uptake kinetics: historical perspective and future directions. Appl Physiol Nutr Metab 34:840–850

    CAS  PubMed  Google Scholar 

  • Hughson RL, Northey DR, Xing HC, Dietrich BH, Cochrane JE (1991) Alignment of ventilation and gas fraction for breath-by-breath respiratory gas exchange calculations in exercise. Comput Biomed Res 24:118–128

    CAS  PubMed  Google Scholar 

  • Humphrey SJE, Wolff HS (1977) The Oxylog. J Physiol (Lond) 267:12P

    CAS  Google Scholar 

  • Ikegami Y, Hiruta S, Ikegami H, Miyamura M (1988) Development of a telemetry system for measuring oxygen uptake during sports activities. Eur J Appl Physiol Occup Physiol 57:622–626

    CAS  PubMed  Google Scholar 

  • Ilsley AH, Hart JD, Withers RT, Roberts JG (1993) Evaluation of five small turbine-type respirometers used in adult anesthesia. J Clin Monit 9:196–201

    CAS  PubMed  Google Scholar 

  • Jaffe MB (2008) Infrared measurement of carbon dioxide in the human breath:“breathe-through” devices from Tyndall to the present day. Anesth Analg 107:890–904

    PubMed  Google Scholar 

  • Kenny GP, Notley SR, Gagnon D (2017) Direct calorimetry: a brief historical review of its use in the study of human metabolism and thermoregulation. Eur J Appl Physiol:1–21

    Google Scholar 

  • King GA, McLaughlin JE, Howley ET, Bassett DR, Ainsworth BE (1999) Validation of Aerosport KB1-C portable metabolic system. Int J Sports Med 20:304–308

    CAS  PubMed  Google Scholar 

  • Kofranyi E, Michaelis H (1940) Ein tragbarer Apparat zur Bestimmung des Grasstoffwechsels. Arbeitsphysiologie (Eur J Appl Physiol Occup Physiol) 11:148–150

    CAS  Google Scholar 

  • Larsson PU, Wadell KME, Jakobsson EJI, Burlin LU, Henriksson-Larsen KB (2004) Validation of the MetaMax II portable metabolic measurement system. Int J Sports Med 25:115–123

    CAS  PubMed  Google Scholar 

  • Laurent CM, Meyers MC, Robinson CA, Strong LR, Chase C, Goodwin B (2008) Validity of the VmaxST portable metabolic measurement system. J Sports Sci 26:709–716

    PubMed  Google Scholar 

  • Louhevaara V, Ilmarinen J, Oja P (1985) Comparison of three field methods for measuring oxygen consumption. Ergonomics 28:463–470

    CAS  PubMed  Google Scholar 

  • Luft UC, Myhre LG, Loeppky JA (1973) Validity of Haldane calculation for estimating respiratory gas exchange. J Appl Physiol 34:864–865

    CAS  PubMed  Google Scholar 

  • Macfarlane DJ (2001) Automated metabolic gas analysis systems: a review. Sports Med 31:841–861

    CAS  PubMed  Google Scholar 

  • Macfarlane DJ, Wong P (2012) Validity, reliability and stability of the portable Cortex Metamax 3B gas analysis system. Eur J Appl Physiol 112:2539–2547

    CAS  PubMed  Google Scholar 

  • McDoniel SO (2007) A systematic review on use of a handheld indirect calorimeter to assess energy needs in adults and children. Int J Sport Nutr Exerc Metab 17:491–500

    PubMed  Google Scholar 

  • McLaughlin JE, King GA, Howley ET, Bassett DR, Ainsworth BE (2001) Validation of the COSMED K4b2 portable metabolic system. Int J Sports Med 22:280–284

    CAS  PubMed  Google Scholar 

  • McLean J, Tobin G (1987) Animal and human calorimetry. Cambridge University Press, Cambridge

    Google Scholar 

  • McNeill G, Cox MD, Rivers JP (1987) The Oxylog oxygen consumption meter: a portable device for measurement of energy expenditure. Am J Clin Nutr 45:1415–1419

    CAS  PubMed  Google Scholar 

  • Medbø JI, Mamen A, Welde B, von Heimburg E, Stokke R (2000) Examination of the Metamax I and II oxygen analysers during exercise studies in the laboratory. Scand J Clin Lab Invest 62:585–598

    Google Scholar 

  • Medbø JI, Mamen A, Resaland GK (2012) New examination of the performance of the MetaMax I metabolic analyser with the Douglas-bag technique. Scand J Clin Lab Invest 72:158–168

    PubMed  Google Scholar 

  • Meyer RM (1990) Oxygen analyzers: Failure rates and life spans of galvanic cells. J Clin Monit Comput 6:196–202

    CAS  Google Scholar 

  • Meyer T, Georg T, Becker C, Kindermann W (2001) Reliability of gas exchange measurements from two different spiroergometry systems. Int J Sports Med 22:593–597

    CAS  PubMed  Google Scholar 

  • Meyer T, Davison RC, Kindermann W (2005) Ambulatory gas exchange measurements–current status and future options. Int J Sports Med 26(suppl 1):S19-27

    PubMed  Google Scholar 

  • Montoye HJ, van Huss WD, Reineke EP, Cockrell J (1958) An investigation of the Müller-Franz calorimeter. Eur J Appl Physiol 17:28–33

    CAS  Google Scholar 

  • Müller E, Franz H (1952) Energieverbrauchsmessungen bei beruflicher Arbeit mit einer verbesserten Respirations-Gasuhr. Eur J Appl Physiol 14:499–504

    Google Scholar 

  • Murray RH, Marko A, Kissen AT, McGuire DW (1968) A new, miniaturized, multichannel, personal radiotelemetry system. J Appl Physiol 24:588–592

    CAS  PubMed  Google Scholar 

  • Namieśnik J, Wardencki W (1999) Water vapour removal from gaseous samples used for analytical purposes. A review. Int J Environ Anal Chem 73:269–280

    Google Scholar 

  • National Aeronautics and Space Administration (2017) Portable unit for metabolic analysis (PUMA). Technology opportunity, TOP3–00231, LEW–17945. NASA Glenn Research Center, Cleveland

    Google Scholar 

  • Nichols BL (1994) Atwater and USDA nutrition research and service: a prologue of the past century. J Nutr 124(Suppl):1718S-1727S

    PubMed  Google Scholar 

  • Osborn JJ (1978) A flowmeter for respiratory monitoring. Crit Care Med 6:349–351

    CAS  PubMed  Google Scholar 

  • Overstreet BS, Bassett DR Jr, Crouter SE, Rider BC, Parr BB (2017) Portable open-circuit spirometry systems. J Sports Med Phys Fit 57:227–237

    Google Scholar 

  • Partington J (1962) The discovery of oxygen. J Chem Educ 39:123–125

    Google Scholar 

  • Patton JF (1997) Measurement of oxygen uptake with portable equipment. In: Carlson-Newberry SJ, Costello RB (eds) Emerging technologies for nutrition research: potential for assessing military performance capability. National Academy Press, Washington, D.C., pp 297–314

    Google Scholar 

  • Perkins CD, Pivarnik JM, Green MR (2004) Reliability and validity of the Vmax ST portable metabolic analyzer. J Phys Act Health 1:413–422

    Google Scholar 

  • Perret C, Mueller G (2006) Validation of a new portable ergospirometric device (Oxycon Mobile®) during exercise. Int J Sports Med 27:363–367

    CAS  PubMed  Google Scholar 

  • Pettenkofer M (1862) Ueber die respiration. Ann der Chem Pharm 2(Suppl):1–52

    Google Scholar 

  • Pinnington HC, Wong P, Tay J, Green D, Dawson B (2001) The level of accuracy and agreement in measures of FEO2, FECO2 and VE between the Cosmed K4b2 portable, respiratory gas analysis system and a metabolic cart. J Sci Med Sport 4:324–335

    CAS  PubMed  Google Scholar 

  • Poole G, Maskell R (1975) Validation of continuous determination of respired gases during steady-state exercise. J Appl Physiol 38:736–738

    CAS  PubMed  Google Scholar 

  • Porszasz J, Barstow TJ, Wasserman K (1994) Evaluation of a symmetrically disposed Pitot tube flowmeter for measuring gas flow during exercise. J Appl Physiol (1985) 77:2659–2665

    CAS  PubMed  Google Scholar 

  • Prieur F, Castells J, Denis C (2003) A methodology to assess the accuracy of a portable metabolic system (VmaxST). Med Sci Sports Exerc 35:879–885

    PubMed  Google Scholar 

  • Proctor DN, Beck KC (1996) Delay time adjustments to minimize errors in breath-by-breath measurement of VO2 during exercise. J Appl Physiol 81:2495–2499

    CAS  PubMed  Google Scholar 

  • Regnault VM, Reiset J (1849) Recherches chimiques sur la respiration des animaux des diverses classes. Ann Chim Phys 26:299–519

    Google Scholar 

  • Roecker K, Prettin S, Sorichter S (2005) Gas exchange measurements with high temporal resolution: the breath-by-breath approach. Int J Sports Med 26:S11-S18

    Google Scholar 

  • Rosdahl H, Gullstrand L, Salier-Eriksson J, Johansson P, Schantz P (2010) Evaluation of the Oxycon mobile metabolic system against the Douglas bag method. Eur J Appl Physiol 109:159–171

    PubMed  Google Scholar 

  • Schrack JA, Simonsick EM, Ferrucci L (2010) Comparison of the Cosmed K4b2 portable metabolic system in measuring steady-state walking energy expenditure. PLoS One 5:e9292

    PubMed  PubMed Central  Google Scholar 

  • Schulz H, Helle S, Heck H (1997) The validity of the telemetric system Cortex X1 in the ventilatory and gas exchange measurement during exercise. Int J Sports Med 18:1–4

    Google Scholar 

  • Severinghaus JW (1963) High-temperature operation of oxygen electrode giving fast response for respiratory gas sampling. Clin Chem 9:727–733

    Google Scholar 

  • Shephard RJ (2017) Open-circuit respirometry: a brief historical review of the use of Douglas bags and chemical analyzers. Eur J Appl Physiol 117:381–387

    PubMed  Google Scholar 

  • Shephard RJ, Aoyagi Y (2012) Measurement of human energy expenditure, with particular reference to field studies: an historical perspective. Eur J Appl Physiol 112:2785–2815

    PubMed  Google Scholar 

  • Simonson E (1928) Ein neuer Respirationsapparat. Arbeitsphysiologie (Eur J Appl Physiol Occup Physiol) 1:224–257

    CAS  Google Scholar 

  • Smith E (1859) Experimental inquiries into the chemical and other phenomena of respiration, and their modifications by various physical agencies. Philos Trans R Soc Lond 149:681–714

    Google Scholar 

  • Sondén K, Tigerstedt R (1895) Untersuchungen über die respiration und den Gesammtstoffwechsel des Menschen1, 2. Skandinavisches Archiv Für Physiol 6:1–224

    Google Scholar 

  • Tissot J (1904) Nouvelle méthode de mesure et d’inscription du débit et des mouvements respiratoires de l’homme et des animaux. J Physiol Pathol Gen 6:688–700

    Google Scholar 

  • Vogler AJ, Rice AJ, Gore CJ (2010) Validity and reliability of the Cortex MetaMax3B portable metabolic system. J Sports Sci 28:733–742

    PubMed  Google Scholar 

  • Wahrlich V, Anjos LA, Going SB, Lohman TG (2006) Validation of the VO2000 calorimeter for measuring resting metabolic rate. Clin Nutr 25:687–692

    PubMed  Google Scholar 

  • Webb P, Troutman SJ Jr (1970) An instrument for continuous measurement of oxygen consumption. J Appl Physiol 28:867–871

    CAS  PubMed  Google Scholar 

  • Weir JBV (1949) New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol (Lond) 109:1–9

    Google Scholar 

  • Wilmore JH, Costill DL (1973) Adequacy of the Haldane transformation in the computation of exercise VO2 in man. J Appl Physiol 35:85–89

    CAS  PubMed  Google Scholar 

  • Winkle JM, Evans BW, Dilg P, Galparoli S (2011) Comparing a portable and standard metabolic measuring system during rest and exercise. J Exerc Physiol 14:80–88

    Google Scholar 

  • Wolff HS (1956) Modern techniques for measuring energy expenditure. Proc Nutr Soc 15:77–80

    CAS  PubMed  Google Scholar 

  • Wolff HS (1958a) The accuracy of the integrating motor pneumotachograph (IMP). J Physiol (Lond) 141:P36-P37 a)

    Google Scholar 

  • Wolff HS (1958b) The integrating motor pneumotachograph: a new instrument for the measurement of energy expenditure by indirect calorimetry. Q J Exp Physiol Cogn Med Sci 43:270–283 b)

    CAS  PubMed  Google Scholar 

  • Wright BM (1961) A vacuum bottle sampler for expired air. J Physiol (Lond) 155:2-3P

    Google Scholar 

  • Xian X, Quach A, Bridgeman D, Tsow F, Forzani E, Tao N (2015) Personalized indirect calorimeter for energy expenditure (EE) measurement. Global J Obesity Diabetes Metab Syndr 2:004–008

    Google Scholar 

  • Yeh MP, Adams TD, Gardner RM, Yanowitz FG (1987) Turbine flowmeter vs. Fleisch pneumotachometer: a comparative study for exercise testing. J Appl Physiol 63:1289–1295

    CAS  PubMed  Google Scholar 

  • Zuntz N, Loewy A, Müller F, Caspari W (1906) Höhenklima und Bergwanderungen: in ihrer Wirkung auf den manschen. Deutsches Verlagshaus Bong & Company, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duncan J. Macfarlane.

Additional information

Communicated by Michael Lindinger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macfarlane, D.J. Open-circuit respirometry: a historical review of portable gas analysis systems. Eur J Appl Physiol 117, 2369–2386 (2017). https://doi.org/10.1007/s00421-017-3716-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-017-3716-8

Keywords

Navigation