Skip to main content

Advertisement

Log in

Open-circuit respirometry: real-time, laboratory-based systems

  • Invited Review
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

This review explores the conceptual and technological factors integral to the development of laboratory-based, automated real-time open-circuit mixing-chamber and breath-by-breath (B × B) gas-exchange systems, together with considerations of assumptions and limitations. Advances in sensor technology, signal analysis, and digital computation led to the emergence of these technologies in the mid-20th century, at a time when investigators were beginning to recognise the interpretational advantages of nonsteady-state physiological-system interrogation in understanding the aetiology of exercise (in)tolerance in health, sport, and disease. Key milestones include the ‘Auchincloss’ description of an off-line system to estimate alveolar O2 uptake B × B during exercise. This was followed by the first descriptions of real-time automated O2 uptake and CO2 output B × B measurement by Beaver and colleagues and by Linnarsson and Lindborg, and mixing-chamber measurement by Wilmore and colleagues. Challenges to both approaches soon emerged: e.g., the influence of mixing-chamber washout kinetics on mixed-expired gas concentration determination, and B × B alignment of gas-concentration signals with respired flow. The challenging algorithmic and technical refinements required for gas-exchange estimation at the alveolar level have also been extensively explored. In conclusion, while the technology (both hardware and software) underpinning real-time automated gas-exchange measurement has progressively advanced, there are still concerns regarding accuracy especially under the challenging conditions of changing metabolic rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Modified with permission, from Whipp et al. (1982, Figs. 1 and 2)

Fig. 4

Similar content being viewed by others

Notes

  1. The interested reader is referred to some excellent reviews (e.g., Atkinson et al. 2005; Crouter et al. 2006; Hodges et al. 2005; Macfarlane 2001, 2017).

  2. Conventionally, ventilation is measured as ‘expired’.

  3. A nomenclature introduced by Whipp in 1978 which apportioned the nonsteady-state period following the onset of constant WR exercise into two distinct temporal domains, based on their underlying determinants of pulmonary gas exchange: phase 1, the initial short period in which pulmonary gas exchange is effectively isolated from the demands of increased muscle metabolic rate and is, therefore, dominated by increases in cardiac output or, more properly, pulmonary blood flow; and phase 2, having the additional challenge presented by the exercise-induced changes in mixed-venous blood composition. The eventual steady state is termed phase 3 (Whipp 1978).

  4. A mixing chamber is a container within the expiratory line that operates as a temporary reservoir into which several consecutive expirates flow (the number depending on the chamber size). Their exit is delayed by having to travel past a series of baffles that both slow transit and promote turbulence, facilitating mixing of the dead space and alveolar components of each expirate. At the chamber outlet, a continuous aliquot of the resulting ‘mixed-expired’ gas is drawn into gas analysers for measurement.

  5. Time required for a response to a step input to increase from 10 to 90% of its steady-state value.

  6. As gas volumes are measured under ambient conditions, correction to STPD and BTPS conditions is required, as appropriate. For example, as \(\dot {V}{{\text{O}}_2}\) and \(\dot {V}{{\text{O}}_2}\) are referenced to STPD, \({\dot {V}_{\text{I}}}\) and \({\dot {V}_{\text{E}}}\) should be expressed as STPD for these particular calculations.

  7. Time required for a response to attain 63% of its final value, with this being effectively attained within a time equal to ~ 4 time constants.

  8. Time required for a response to attain 50% of its final value, with no assumptions being made about model order.

  9. Deconvolution requires solution of the dynamic input–output relationship for the mixing chamber, by inversion of its transfer function (e.g., Finklestein and Carson 1985).

  10. EDL, an XML application that provides a standard way of describing scientific experiments.

  11. Ascribed variously to Harry Nyquist, Claude Shannon, Edmund Taylor Whittaker and Vladimir Kotelnikov (Kotelnikov 1933; Nyquist 1928; Shannon 1949; Whittaker 1915).

  12. Employing lower digitisation frequencies, e.g., in the region of 25 Hz (Beaver et al. 1981), is likely to introduce anomolous dynamic distortions (‘aliasing’), such that different signals are no longer transformed uniquely (e.g., Bendat and Piersol 1986).

  13. The decomposition of a function into its simple sinusoidal or harmonic components (e.g., Bendat and Piersol 1986).

  14. The correlation of a signal with a lagged version of itself as a function of the lag time (e.g., Bendat and Piersol 1986).

  15. An exception is when other inspirates are employed, e.g., hyperoxic, hypoxic, or hypercapnic (reviewed in Porszasz et al. 2007; Ward et al 2017).

  16. More complex characteristics have also been explored (e.g., Arieli and Van Liew 1981; Mitchell 1979).

  17. \({({V_{\text{I}}} \cdot {F_{\text{I}}}{{\text{N}}_2} - {\text{ }}{V_{\text{E}}} \cdot {F_{\overline {{\text{E}}} }}{{\text{N}}_2})^i} - {\text{ }}V_{{\text{A}}}^{{i - 1}}({F_{\text{A}}}{\text{N}}_{2}^{i} - {\text{ }}{F_{\text{A}}}{\text{N}}_{2}^{{i - 1}}){\text{ }}+{\text{ }}{F_{\text{A}}}N_{2}^{i}(V_{A}^{i} - {\text{ }}V_{A}^{{i - 1}}){\text{ }}={\text{ }}0\) and \({F_{\text{A}}}{\text{N}}_{2}^{i}(V_{{\text{A}}}^{i} - {\text{ }}V_{{\text{A}}}^{{i - 1}}){\text{ }}={({V_{\text{I}}} \cdot {F_{\text{I}}}{{\text{N}}_2} - {\text{ }}{V_{\text{E}}} \cdot {F_{\overline {{\text{E}}} }}{{\text{N}}_2})^i} - {\text{ }}V_{{\text{A}}}^{{i - 1}}({F_{\text{A}}}{\text{N}}_{2}^{i} - {\text{ }}{F_{\text{A}}}{\text{N}}_{2}^{{i - 1}})\).

Abbreviations

B × B:

Breath-by-breath

BTPS:

Body temperature and pressure, saturated

CO2 :

Carbon dioxide

CPET:

Cardiopulmonary exercise testing

EELV:

End-expiratory lung volume

f B :

Breathing frequency

\({F_{\overline {{\text{E}}} }}{{\text{CO}}_2}\) :

Mixed-expired CO2 fraction

\({F_{\overline {{\text{E}}} }}{{\text{N}}_2}\) :

Mixed-expired N2 fraction

\({F_{\overline {{\text{E}}} }}{{\text{O}}_2}\) :

Mixed-expired O2 fraction

F ETCO2 :

End-tidal CO2 fraction

F ETO2 :

End-tidal O2 fraction

F ICO2 :

Inspired CO2 fraction

F IN2 :

Inspired N2 fraction

F IO2 :

Inspired O2 fraction

FRC:

Functional residual capacity

N2 :

Nitrogen

O2 :

Oxygen

PCO2 :

Partial pressure of CO2

P ACO2 :

Alveolar partial pressure of CO2

pdf:

Probability-density function

PH2O:

Water-vapour pressure

PO2 :

Partial pressure of O2

P AO2 :

Alveolar partial pressure of O2

RER:

Respiratory exchange ratio

SD:

Standard deviation

STPD:

Standard temperature and pressure, dry

τ:

Time constant

t :

Time

t 1/2 :

Half-time

t 90 :

10–90% response time

T D :

Transport delay

V :

Volume

V A :

Alveolar volume

V BV :

Breathing valve volume

VCO2, st:

Volume of lung CO2 stores

VN2, st:

Volume of lung N2 stores

VO2, st:

Volume of lung O2 stores

V T :

Tidal volume

\(\dot {v}\) :

Instantaneous flow

\({\dot {V}_{\text{A}}}\) :

Alveolar ventilation

\({\dot {V}_{\text{E}}}\) :

Expired ventilation

\({\dot {V}_{\text{I}}}\) :

Inspired ventilation

\({\dot {V}_{\text{E}}}/\dot {V}{\text{C}}{{\text{O}}_2}\) :

Ventilatory equivalent for CO2

\({\dot {V}_{\text{E}}}/\dot {V}{{\text{O}}_2}\) :

Ventilatory equivalent for O2

\(\dot {V}{\text{C}}{{\text{O}}_2}\) :

Carbon dioxide output

\(\dot {V}{\text{C}}{{\text{O}}_{2A}}\) :

Alveolar carbon dioxide output

\(\dot {V}{{\text{O}}_2}\) :

Oxygen uptake

\(\dot {V}{{\text{O}}_{2A}}\) :

Alveolar oxygen uptake

WR:

Work rate

References

  • Aliverti A, Pedotti A (2003) Opto-electronic plethysmography. Monaldi Arch Chest Dis 59:12–16

    CAS  PubMed  Google Scholar 

  • Aliverti A, Kayser B, Macklem PT (2004) Breath-by-breath assessment of alveolar gas stores and exchange. J Appl Physiol 96:1464–1469

    Article  CAS  PubMed  Google Scholar 

  • Aliverti A, Kayser B, Cautero M, Dellacà RL, di Prampero PE, Capelli C (2009) Pulmonary \(\dot {V}{{\text{O}}_2}\) kinetics at the onset of exercise is faster when actual changes in alveolar O2 stores are considered. Resp Physiol Neurobiol 1698:78–82

    Article  Google Scholar 

  • American Thoracic Society (1995) Standardization of spirometry, 1994: update. Am J Respir Crit Care Med 152:1107–1136

    Article  Google Scholar 

  • American Thoracic Society, American College of Chest Physicians (2003) ATS/ACCP Statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med 167:211–277

    Article  Google Scholar 

  • Arieli R, Van Liew HD (1981) Corrections for the response time and delay of mass spectrometers. J Appl Physiol 51:1422–1471

    Google Scholar 

  • Atkinson G, Davison RCR, Nevill AM (2005) Performance characteristics of gas analysis systems: what we know and what we need to know. Internat J Sports Med 26(suppl 1):S2–S10

    Article  Google Scholar 

  • Auchincloss JH Jr, Gilbert R, Baule GH (1966) Effect of ventilation on oxygen transfer during early exercise. J Appl Physiol 21:810–818

    Article  PubMed  Google Scholar 

  • Balady GJ, Arena R, Sietsema K, Myers J, Coke L, Fletcher GF, Forman D, Franklin B, Guazzi M, Gulati M, Keteyian SJ, Lavie CJ, Macko R, Mancini D, Milani RV; American Heart Association Exercise, Rehabilitation C, Prevention Committee of the Council on Clinical Cardiology; Council on Epidemiology and Prevention; Council on Peripheral Vascular Disease; Interdisciplinary Council on Quality of Care and Outcomes Research (2010) Clinician’s Guide to cardiopulmonary exercise testing in adults: a scientific statement from the American Heart Association. Circulation 13(122):191–225

    Article  Google Scholar 

  • Bassett DR Jr, Howley ET, Thompson DL, King GA, Strath SJ, McLaughlin JE, Parr BB (2001) Validity of inspiratory and expiratory methods of measuring gas exchange with a computerized system. J Appl Physiol 91:218–224

    Article  PubMed  Google Scholar 

  • Beaver WL, Wasserman K, Whipp BJ (1973) On-line computer analysis and breath-by-breath graphical display of exercise function tests. J Appl Physiol 341:128–132

    Article  Google Scholar 

  • Beaver WL, Lamarra N, Wasserman K (1981) Breath-by-breath measurement of true alveolar gas exchange. J Appl Physiol 51:1662–1675

    Article  CAS  PubMed  Google Scholar 

  • Bendat AG, Piersol JS (1986) Random data: analysis and measurement procedures, 2nd edn. Wiley, New York

    Google Scholar 

  • Benson AP, Bowen TS, Ferguson C, Murgatroyd SR, Rossiter HB (2017) Data collection, handling, and fitting strategies to optimize accuracy and precision of oxygen uptake kinetics estimation from breath-by-breath measurements. J Appl Physiol 123:227–242

    Article  PubMed  Google Scholar 

  • Bernard TE (1977) Aspects of on-line digital integration of pulmonary gas transfer. J Appl Physiol 43:375–378

    Article  CAS  PubMed  Google Scholar 

  • Bock AV, Dill DB, Talbott JH (1928) Studies in muscular activity: I. Determination of the rate of circulation of blood in man at work. J Physiol 66:121–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borrani F, Canadau R, Millet GY, Perrey S, Fuchslocher J, Rouillon JD (2001) Is the \(\dot {V}{{\text{O}}_2}\) slow component dependent upon progressive recruitment of fast-twitch fibres in trained runners? J Appl Physiol 90:2212–2220

    Article  CAS  PubMed  Google Scholar 

  • Boutelier U, Gomez U, Mader G (1981) A piston pump for respiration simulation. J Appl Physiol Respirat Environ Exercise Physiol 50:663–664

    Google Scholar 

  • Boutellier U, Künding T, Gomez U, Pietsch P, Koller EA (1987) Respiratory phase detection and delay determination for breath-by-breath analysis. J Appl Physiol 62:837–843

    Article  CAS  PubMed  Google Scholar 

  • Bradley P (1983) A model for gas-exchange simulation. J Cardiovasc Pulm Tech 11:33–39

    Google Scholar 

  • Broman S, Wigertz O (1971) Transient dynamics of ventilation and heart rate with step changes in work load from different load levels. Acta Physiol Scand 81:54–74

    Article  CAS  PubMed  Google Scholar 

  • Broman S, Nygards M-E, Wigertz O (1970) A digital computer method for reduction of noise and artefacts in automatic physiological signal processing. Report, Depts Aviation and Naval Medicine, Karolinska Institutet, Stockholm

  • Busso T, Robbins PA (1997) Evaluation of estimates of alveolar gas exchange by using a tidally ventilated non-homogenous lung model. J Appl Physiol 82:1963–1971

    Article  CAS  PubMed  Google Scholar 

  • Cala SJ, Kenyon CM, Ferrigno G, Carnevali P, Aliverti A, Pedotti A, Macklem PT, Rochester DF (1996) Chest wall and lung volume estimation by optical reflectance motion analysis. J Appl Physiol 81:2680–2689

    Article  CAS  PubMed  Google Scholar 

  • Capelli C, Cautero M, di Prampero PE (2001) New perspectives in breath-by-breath determination of alveolar gas exchanges in humans. Pflügers Arch 441:566–577

    Article  CAS  PubMed  Google Scholar 

  • Capelli C, Cautero M, Pogliaghi S (2011) Algorithms, modelling and \(\dot {V}{{\text{O}}_2}\) kinetics. Eur J Appl Physiol 111:331–342

    Article  PubMed  Google Scholar 

  • Cautero M, Beltrami AP, Capelli C, di Prampero PE (2002) Breath-by-breath alveolar oxygen transfer at the onset of step exercise in humans: methodological implications. Eur J Physiol 88:203–231

    Article  CAS  Google Scholar 

  • Cautero M, di Prampero PE, Capelli C (2003) New acquisitions in the assessment of breath-by-breath alveolar gas transfer in humans. Eur J Appl Physiol 90:231–241

    Article  CAS  PubMed  Google Scholar 

  • Cautero M, di Prampero PE, Tam E, Capelli C (2005) Alveolar oxygen uptake kinetics with step, impulse and ramp exercise in humans. Eur J Appl Physiol 95:474–485

    Article  CAS  PubMed  Google Scholar 

  • Cerretelli P, Sikand R, Farhi LE (1966) Readjustments in cardiac output and gas exchange during onset of exercise and recovery. J Appl Physiol 21:1345–1350

    Article  CAS  PubMed  Google Scholar 

  • Cettolo V, Francescato MP (2015) Assessment of breath-by-breath alveolar gas exchange: an alternative view of the respiratory cycle. Eur J Appl Physiol 115:1897–1904

    Article  CAS  PubMed  Google Scholar 

  • Chance B, Williams GR (1955) Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. J Biol Chem 217:383–393

    Article  CAS  PubMed  Google Scholar 

  • Cherniack NS, Longobardo GS (1970) Oxygen and carbon dioxide gas stores of the body. Physiol Rev 50:196–243

    Article  CAS  PubMed  Google Scholar 

  • Cissik JH, Johnson RE, Rokosch DK (1972) Production of gaseous nitrogen in human steady-state conditions. J Appl Physiol 32:155–159

    Article  CAS  PubMed  Google Scholar 

  • Consolazio CF, Johnson RE, Pecora LJ (1963) Physiological measurements of metabolic functions in man. McGraw, New York

    Google Scholar 

  • Cooper CB, Harris ND, Howard P (1990) Evaluation of a turbine flow meter (Ventilometer Mark 2) in the measurement of ventilation. Respiration 57:243–247

    Article  CAS  PubMed  Google Scholar 

  • Cox LA, Almeida AP, Robinson JS, Horsley JK (1974) An electronic respirometer. Br J Anaesth 46:302–310

    Article  CAS  PubMed  Google Scholar 

  • Craig FN (1972) Oxygen uptake at the beginning of work. J Appl Physiol 33:611–615

    Article  CAS  PubMed  Google Scholar 

  • Crouter SE, Antczak A, Hudak JR, DellaValle DM, Haas JD (2006) Accuracy and reliability of the ParvoMedics TrueOne 2400 and MedGraphics VO2000 metabolic systems. Eur J Appl Physiol 98:139–151

    Article  PubMed  Google Scholar 

  • Dal Monte A, Faina M, Leonardi L, Todaro A, Guidl G, Petrelli G (1989) II consumo massimo di ossígeno in telemetría. Rivista di Cultura Sportiva 15:35–44

    Google Scholar 

  • Davies EE, Hahn HL, Spiro SG, Edwards RH (1974) A new technique for recording respiratory transients at the start of exercise. Respir Physiol 20:69–79

    Article  CAS  PubMed  Google Scholar 

  • Davis JA (1995). Direct determination of aerobic power. In: Maude PJ, Foster C (eds) Physiological assessment of human fitness. Human Kinetics Champaign, pp 9–17

  • Dellacà RL, Aliverti A, Pelosi P, Carlesso E, Chiumello D, Pedotti A, Gattinoni L (2001) Estimation of end-expiratory lung volume variations by optoelectronic plethysmography. Crit Care Med 29:1807–1811

    Article  PubMed  Google Scholar 

  • di Prampero PE, Lafortuna CL (1989) Breath-by-breath estimate of alveolar gas transfer variability in man at rest and during exercise. J Physiol 415:459–475

    Article  PubMed  PubMed Central  Google Scholar 

  • DuBois AB, Britt AG, Fenn WO (1952) Alveolar CO2 during the respiratory cycle. J Appl Physiol 4:535–548

    Article  CAS  PubMed  Google Scholar 

  • Elliott SE, Segger FJ, Osborn JJ (1966) A modified oxygen gauge for the rapid measurement of PO2 in respiratory gases. J Appl Physiol 21:1672–1674

    Article  CAS  PubMed  Google Scholar 

  • ERS Task Force on Standardization of Clinical Exercise Testing (1997) Clinical exercise testing with reference to lung diseases: indications, standardization and interpretation strategies. Eur Respir J 10:2662–2689

    Article  Google Scholar 

  • Farhi LE (1963) Gas stores of the body. In: Fenn WO, Rahn H (eds) Handbook of physiology, Sect. 3: Respiration, vol I. American Physiol Soc, Washington DC, pp 873–886

    Google Scholar 

  • Farhi LE, Rahn H (1955) Gas stores of the body and the unsteady state. J Appl Physiol 7:472–484

    Article  CAS  PubMed  Google Scholar 

  • Ferrus L, Guenard H, Vardon G, Varene P (1980) Respiratory water loss. Respir Physiol 39:367–381

    Article  CAS  PubMed  Google Scholar 

  • Finklestein L, Carson ER (1985) Mathematical modelling of dynamic biological systems. Research Studies Press, Letchworth

    Google Scholar 

  • Fleisch A (1925) Der pneumotachograph: ein apparat zur beischwindig-keitregstrierung der atemluft. Arch Ges Physiol 209:713–722

    Article  Google Scholar 

  • Foss Ø, Hallén J (2005) Validity and stability of a computerized metabolic system with mixing chamber. Internat J Sports Med 26:569–575

    Article  CAS  Google Scholar 

  • Foster SL, Norton AC (1983) A standard artificial lung for system calibration in physiological gas exchange measurements. In: Nair S (ed) Computers in critical care and pulmonary medicine, vol 3. Plenum Press, New York, pp 213–220

    Chapter  Google Scholar 

  • Fowler RC (1949) A rapid infra-red gas analyser. Rev Scient Instruments 20:175–178

    Article  CAS  Google Scholar 

  • Francescato MP, Cettolo V, Bellio R (2014a) Assembling more O2 uptake responses: is it possible to merely stack the repeated transitions? Respir Physiol Neurobiol 200:46–49

    Article  CAS  PubMed  Google Scholar 

  • Francescato MP, Cettolo V, Bellio R (2014b) Confidence intervals for the parameters estimated from simulated O2 uptake kinetics: effects of different data treatments. Exp Physiol 99:187–195

    Article  CAS  PubMed  Google Scholar 

  • Fujihara Y, Hildebrandt JR, Hildebrandt J (1973) Cardiorespiratory transients in exercising man. I. Tests of superposition. J Appl Physiol 35:58–67

    Article  CAS  PubMed  Google Scholar 

  • Gallagher CG (1994) Exercise limitation and clinical exercise testing in chronic obstructive pulmonary disease. Clin Chest Med 15:305–326

    Article  CAS  PubMed  Google Scholar 

  • Geppert J, Zuntz N (1888) Über die Regulation der Atmung. Arch Ges Physiol 42:189–244

    Article  Google Scholar 

  • Giezendanner D, Cerretelli P, di Prampero PE (1983) Breath-by-breath alveolar gas exchange. J Appl Physiol 55:583–590

    Article  CAS  PubMed  Google Scholar 

  • Gilbert R, Auchincloss JH Jr, Baule GH (1967) Metabolic and circulatory adjustments to unsteady-state exercise. J Appl Physiol 22:905–912

    Article  CAS  PubMed  Google Scholar 

  • Gilbert R, Baule GH, Auchincloss JH Jr (1966) Theoretical aspects of oxygen transfer during early exercise. J Appl Physiol 21:803–809

    Article  CAS  PubMed  Google Scholar 

  • Gimenez P, Busso T (2008) Implications of breath-by-breath oxygen uptake determination on kinetics assessment during exercise. Respir Physiol Neurobiol 162:238–241

    Article  PubMed  Google Scholar 

  • Gore CJ, Catcheside PG, French SN, Bennett JM, Laforgia J (1997) Automated \(\dot {V}{{\text{O}}_2}\)max calibrator for open-circuit indirect calorimetry systems. Med Sci Sports Exerc 29:1095–1103

    Article  CAS  PubMed  Google Scholar 

  • Grimby G (1969) Respiration in exercise. Med Sci Sports 1:9–14

    Google Scholar 

  • Grønlund L (1984) A new method for breath-to-breath determination of oxygen flux across the alveolar membrane. Eur J Appl Physiol Occup Physiol 52:167–172

    Article  PubMed  Google Scholar 

  • Haldane JS (1912) Methods of air analysis. Griffin, London, p 56

    Google Scholar 

  • Hansen E (1935) Über dir Sauerstoffschuld bei körperlicher Arbeit. Arbeitsphysiol 8:151–171

    Google Scholar 

  • Henry FM, DeMoor JC (1956) Lactic and alactic oxygen consumption in moderate exercise of graded intensity. J Appl Physiol 8:608–614

    Article  CAS  PubMed  Google Scholar 

  • Hill AV, Lupton H (1922) The oxygen consumption during running. J Physiol 56:32–33

    Article  Google Scholar 

  • Hlastala MP, Wranne B, Lenfant CJ (1973) Cyclical variations in FRC and other respiratory variables in resting man. J Appl Physiol 34:670–676

    Article  CAS  PubMed  Google Scholar 

  • Hodges LD, Brodie DA, Bromley PD (2005) Validity and reliability of selected commercially available metabolic analyser systems. Scand J Med Sci Sports 15:271–279

    Article  CAS  PubMed  Google Scholar 

  • Howson MG, Khamnei S, O’Connor DF, Robbins PA (1987) The properties of a turbine device for measuring respiratory volumes in man. J Physiol 382:12P

    Google Scholar 

  • Hughson RL, Kowalchuk JM, Prime WM, Green HJ (1980) Open-circuit gas exchange analysis in the non-steady-state. Can J Appl Sport Sci 5:15–18

    CAS  PubMed  Google Scholar 

  • Hughson RL, Northey DR, Xing HC, Dietrich BH, Cochrane JE (1991) Alignment of ventilation and gas fraction for breath-by-breath respiratory gas exchange calculations in exercise. Comput Biomed Res 24:118–128

    Article  CAS  PubMed  Google Scholar 

  • Huszczuk A, Whipp BJ, Wasserman K (1990) A respiratory gas exchange simulator for routine calibration in metabolic studies. Eur Respir J 3:465–468

    CAS  PubMed  Google Scholar 

  • Huszczuka A, Haouzi P (2016) On the inaccuracy of breath-by-breath metabolic gas exchange systems. Respir Physiol Neurobiol 233:14–16

    Article  Google Scholar 

  • Jaffe MB, Frick G, Wilson D, Johnston M, Reid H, Foster S, Norton AC (1984) A microprocessor-based system for measurement of gas exchange. J Med Syst 8:437–450

    Article  CAS  PubMed  Google Scholar 

  • James DVB, Sandals LE, Wood DM, Jones AM (2007) Pulmonary gas exchange. In: Winter EM, Jones AM, Davison RCR, Bromley PD, Mercer TH (eds) Sport and exercise physiology testing guidelines, vol 1 Sport testing, The British Association of Sport and Exercise Sciences guide. Routledge, Abingdon, pp 101–111

    Google Scholar 

  • Jenkins JS, Valcke CP, Ward DS (1989) A programmable system for acquisition and reduction of respiratory physiological data. Ann Biomed Eng 17:93–108

    Article  CAS  PubMed  Google Scholar 

  • Jones NL (1984) Evaluation of a microprocessor-controlled exercise testing system. J Appl Physiol 57:1312–1318

    Article  CAS  PubMed  Google Scholar 

  • Jones NL, Campbell EJM (1982) Clinical exercise testing, 2nd edn. WB Saunders, Philadelphia

    Google Scholar 

  • Jones NL, Kane JW (1979) Quality control of exercise test measurements. Med Sci Sports 11:368–372

    CAS  PubMed  Google Scholar 

  • Jones AM, Poole DC (eds) (2005) Oxygen uptake kinetics in health and disease. Routledge, London

    Google Scholar 

  • Keir DA, Murias JM, Paterson DH, Kowalchuk JM (2014) Breath-by-breath pulmonary O2 uptake kinetics: effect of data processing on confidence in estimating model parameters. Exp Physiol 99:1511–1522

    Article  PubMed  Google Scholar 

  • Kim TS, Rahn H, Farhi LE (1966) Estimation of true venous and arterial PCO2 by gas analysis of a single breath. J Appl Physiol 21:1338–1344

    Article  CAS  PubMed  Google Scholar 

  • Kissen A, McGuire DW, Sterling JJ (1967) General description and evaluation of an on-line oxygen uptake computer. AMRL-TR 67-17, Aerospace Med Res Laboratories. Wright-Patterson Air Force Base, Ohio, June

    Google Scholar 

  • Kotelnikov VA (1933) On the carrying capacity of the ether and wire in telecommunications. Material for the First All-Union Conference on Questions of Communication. Izd Red Upr Svyazi RKKA, Moscow

  • Krogh A (1913) A bicycle ergometer and respiration apparatus for the experimental study of muscle work. Skand Arch Physiol 33:375–394

    Article  Google Scholar 

  • Krogh A, Lindhard J (1913) The regulation of respiration and circulation during the initial stages of muscular work. J Physiol 47:112–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamarra N (1990) Variables, constants and parameters: clarifying the system structure. Med Sci Sports Exerc 22:88–95

    Article  CAS  PubMed  Google Scholar 

  • Lamarra N, Whipp BJ (1995) Measurement of pulmonary gas exchange. In: Maud PJ, Foster C (eds) Physiological assessment of human fitness. Human Kinetics, Champaign, pp 19–35

    Google Scholar 

  • Lamarra N, Whipp BJ, Ward SA, Wasserman K (1987) Effect of interbreath fluctuations on characterising exercise gas exchange kinetics. J Appl Physiol 62:2003–2012

    Article  CAS  PubMed  Google Scholar 

  • Lavoisier A (1871) Letters from M Lavoisier to Dr Black. Report of the Forty-first Meeting of The British Association for the Advancement of Science, pp 191–192

  • Liese W, Warwick WJ, Cumming G (1974) Water vapour pressure in expired air. Respiration 31:252–261

    Article  CAS  PubMed  Google Scholar 

  • Lilly JC (1950a) Flow meter for recording respiratory flow of human subjects. In: Comroe JH Jr (ed) Methods in medical research, vol 2. Yearbook Publishers, Chicago, pp 113–122

    Google Scholar 

  • Lilly JC (1950b) Respiratory system: methods: gas analysis. In: Glasser O (ed) Medical physics, vol 2. Yearbook Publishers, Chicago, pp 845–855

    Google Scholar 

  • Linnarsson D (1974) Dynamics of pulmonary gas exchange and heart rate changes at the start and end of exercise. Acta Physiol Scand 415:1–68

    CAS  Google Scholar 

  • Linnarsson D, Lindborg B (1974) Breath-by-breath measurement of respiratory gas exchange using on-line analog computation. Scand J Clin Lab Invest 34:219–224

    Article  CAS  PubMed  Google Scholar 

  • Luft UC, Myhre LG, Loeppky JA (1973) Validity of Haldane calculation for estimating respiratory gas exchange. J Appl Physiol 34:864–865

    Article  CAS  PubMed  Google Scholar 

  • Macfarlane DJ (2001) Automated metabolic gas analysis systems: a review. Sports Med 31:841–861

    Article  CAS  PubMed  Google Scholar 

  • Macfarlane DJ (2017) Open-circuit respirometry: a historical review of portable gas analysis systems. Eur J Appl Physiol 117:2369–2386

    Article  CAS  PubMed  Google Scholar 

  • Margaria R, Mangili F, Cuttica F, Cerretelli P (1965) The kinetics of the oxygen consumption at the onset of muscular exercise in man. Ergonomics 8:49–54

    Article  Google Scholar 

  • Matthews JI, Bush BA, Morales FM (1987) Microprocessor exercise physiology systems vs a nonautomated system: a comparison of data output. Chest 92:696–703

    Article  CAS  PubMed  Google Scholar 

  • Meakins J, Long CNH (1927) Oxygen consumption, oxygen debt and lactic acid in circulatory failure. J Clin Invest 4:273–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, Crapo R, Enright P, van der Grinten CP, Gustafsson P, Jensen R, Johnson DC, MacIntyre N, McKay R, Navajas D, Pedersen OF, Pellegrino R, Viegi G, Wanger J (2005) Standardisation of spirometry. Eur Respir J 26:319–338

    Article  CAS  PubMed  Google Scholar 

  • Mitchell RR (1979) Incorporating the gas analyzer response time in gas exchange computations. J Appl Physiol 47:1118–1122

    Article  CAS  PubMed  Google Scholar 

  • Murphy TW, Crane R (1962) Analogue computation of alveolar gas parameter via direct technique. IRE Int Convention Record 10:74

    Google Scholar 

  • Murray RH, Marko A, Kissen AT, McGuire DW. A new, miniaturized, multichannel, personal radiotelemetry system. J Appl Physiol 24:588–592

  • Myers J, Walsh D, Sullivan M, Froelicher V (1990) Effect of sampling on variability and plateau in oxygen uptake. J Appl Physiol 68:404–410

    Article  CAS  PubMed  Google Scholar 

  • Naimark A, Wasserman K, McIlroy MB (1964) Continuous measurement of ventilatory exchange ratio during exercise. J Appl Physiol 19:644–652

    Article  CAS  PubMed  Google Scholar 

  • Namieśnik J, Wardencki W (1999) Water vapour removal from gaseous samples used for analytical purposes. A review. Int J Environ Anal Chem 73:269–280

    Article  Google Scholar 

  • Noguchi H, Ogushi Y, Yoshiya I, Itakura N, Yamabayashi H (1982) Breath-by-breath \(\dot {V}{\text{C}}{{\text{O}}_2}\) and \(\dot {V}{{\text{O}}_2}\) required compensation for transport delay and dynamic response. J Appl Physiol 52:79–84

    Article  CAS  PubMed  Google Scholar 

  • Nyquist H (1928) Certain topics in telegraph transmission theory. Trans AIEE 47:617–644

    Google Scholar 

  • Otis AB (1964) Quantitative relationships in steady-state gas exchange. In: Fenn WO, Rahn H (eds) Handbook of physiology, Respiration, Sect. 3, vol I. Amer Physiol Soc, Washington DC, pp 681–698

    Google Scholar 

  • Patton JF (1997) Measurement of oxygen uptake with portable equipment. In: Carlson-Newberry SJ, Costello RB (eds) Emerging technologies for nutrition research: potential for assessing military performance capability. National Academy Press, Washington, pp 297–314

    Google Scholar 

  • Pearce DH, Milhorn HT Jr (1977) Dynamic and steady-state respiratory responses to bicycle ergometer exercise. J Appl Physiol: Respir Environ Exerc Physiol 42:959–967

    Article  CAS  Google Scholar 

  • Pearce DH, Milhorn HT Jr, Holloman GH Jr, Reynolds WJ (1977) Computer-based system for analysis of respiratory responses to exercise. J Appl Physiol: Respir Environ Exerc Physiol 42:968–975

    Article  CAS  Google Scholar 

  • Poole DC, Jones AM (2012) Oxygen uptake kinetics. Compr Physiol 2:933–996

    Article  PubMed  Google Scholar 

  • Poole DC, Whipp BJ (1988) Haldane transformation. Med Sci Sports Exerc 20:420–421

    Article  CAS  PubMed  Google Scholar 

  • Porszasz J, Woodhouse LJ, Casaburi R, Nguyen A, Tsurugaya H, Whipp BJ (2004) Use of physiological calibration to validate gas exchange measurements during exercise. Med Sci Sports Exerc 36:S27

    Google Scholar 

  • Porszasz J, Stringer W, Casaburi R (2007) Equipment, measurements and quality control in clinical exercise testing. In: Ward SA, Palange P (eds) Clinical exercise testing. European Respiratory Monograph, vol 40. European Respiratory Society Journals, Sheffield, pp 108–128

    Chapter  Google Scholar 

  • Porszasz J, Blonshine S, Cao R, Paden HA, Casaburi R, Rossiter HB (2016) Biological quality control for cardiopulmonary exercise testing in multicenter clinical trials. BMC Pulm Med 16:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Potter CR, Childs DJ, Houghton W, Armstrong N (1999) Breath-to-breath noise in the ventilatory and gas exchange responses of children to exercise. Eur J Appl Physiol Occup Physiol 80:118–124

    Article  CAS  PubMed  Google Scholar 

  • Primiano FP Jr, Montague FM, Saidel GM (1984) Measurement system for water vapor and temperature dynamics. J Appl Physiol: Respir Environ Exercise Pbysiol 56:1679–1685

    Article  Google Scholar 

  • Primiano FP Jr, Saidel GM, Montague FW Jr, Kruse KL, Green CG, Horowitz JG (1988) Water vapour and temperature dynamics in the upper airways of normal and CF subjects. Eur Respir J 1:407–414

    PubMed  Google Scholar 

  • Proctor DN, Beck KC (1996) Delay time adjustments to minimise errors in breath by breath measurement of \(\dot {V}{{\text{O}}_2}\) during exercise. J Appl Physiol 81:2495–2499

    Article  CAS  PubMed  Google Scholar 

  • Puente-Maestu L, Sanz ML, Sanz P, Nunez A, Gonzalez F, Whipp BJ (2001) Reproducibility of the parameters of the on-transient cardiopulmonary responses during moderate exercise in patients with chronic obstructive pulmonary disease. Eur J Appl Physiol 85:434–441

    Article  CAS  PubMed  Google Scholar 

  • Puente-Maestu L, Abad JB, Godoy R, Pérez-Parra JM, Gubillo JM, Whipp BJ (2002) Breath-by-breath fluctuations of pulmonary gas exchange and ventilation in COPD patients. Eur J Appl Physiol 87:535–541

    Article  CAS  PubMed  Google Scholar 

  • Puente-Maestu L, Palange P, Casaburi R, Laveneziana P, Maltais F, Neder JA, O’Donnell DE, Onorati P, Porszasz J, Rabinovich R, Rossiter HB, Singh S, Troosters T, Ward S (2016) Use of exercise testing in the evaluation of interventional efficacy: an official ERS statement. Eur Resp J 47:429–460

    Article  Google Scholar 

  • Reinhard U, Müller PH, Schmülling RM (1979) Determination of anaerobic threshold by the ventilation equivalent in normal individuals. Respiration 38:36–42

    Article  CAS  PubMed  Google Scholar 

  • Roecker K, Prettin S, Sorichter S (2005) Gas exchange measurements with high temporal resolution: the breath-by-breath approach. Int J Sports Med 26:S1–S8

    Article  Google Scholar 

  • Rossiter HB (2011) Exercise: kinetic considerations for gas exchange. Compr Physiol 1:203–244

    PubMed  Google Scholar 

  • Rossiter HB, Howe FA, Ward SA, Kowalchuk JM, Griffiths JR, Whipp BJ (2000) Inter-sample [PCr] fluctuations by 31P-MRS and parameter estimation of metabolic responses to exercise in humans. J Physiol 528:359–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowell LB (1993) Human cardiovascular control. Oxford Univ Press, New York

    Book  Google Scholar 

  • Sanjo Y, Ikeda K (1987) A small bypass mixing chamber for monitoring metabolic rate and anesthetic uptake: the bymixer. J Clin Monit 3:235–243

    CAS  PubMed  Google Scholar 

  • Scheid P, Slama H, Piiper J (1971) Electronic compensation of the effects of water vapor in respiratory mass spectrometry. J Appl Physiol 30:258–260

    Article  CAS  PubMed  Google Scholar 

  • Sciurba FC, Owens GR, Ondriezek J (1991) The effect of sample interval on values obtained during incremental exercise. Am Rev Respir Dis 143:A176

    Google Scholar 

  • Severinghaus JW (1963) High-temperature operation of oxygen electrode giving fast response for respiratory gas sampling. Clin Chem 12:727–733

    Article  CAS  PubMed  Google Scholar 

  • Shannon CE (1949) Communications in the presence of noise. Proc Institute of Radio Engineers 37:10–21

    Google Scholar 

  • Shephard RJ (2017) Open-circuit respirometry: a brief historical review of the use of Douglas bags and chemical analysers. Eur J Appl Physiol 117:381–387

    Article  PubMed  Google Scholar 

  • Shykoff BE, Swanson HT (1987) A model-free method for mass spectrometer response correction. J Appl Physiol 63:2148–2153

    Article  CAS  PubMed  Google Scholar 

  • Slivka WA, Sciurba FC (1998) Parameters and power to measure a therapeutic effect (lung reduction surgery—LVRS) in advanced emphysema patients. Am J Respir Crit Care Med 157:A92

    Google Scholar 

  • Sodal IE, Swanson GD, Micco AJ, Sprague F, Ellis DG (1983) A computerized mass spectrometer and flowmeter system for respiratory gas measurements. Ann Biomed Eng 11:83–99

    Article  CAS  PubMed  Google Scholar 

  • Stirling JR, Zakynthinaki MS, Billat V (2008) Modeling and analysis of the effect of training on \(\dot {V}{{\text{O}}_2}\) kinetics and anaerobic capacity. Bull Math Biol 70:1348–1370

    Article  CAS  PubMed  Google Scholar 

  • Sue DY, Hansen JE, Blais M, Wasserman K (1980) Measurement and analysis of gas exchange during exercise using a programmable calculator. J Appl Physiol 49:456–461

    Article  CAS  PubMed  Google Scholar 

  • Swanson GD (1980) Breath-to-breath consideration for gas exchange kinetics. In: Cerretelli P, Whipp BJ (eds) Exercise bioenergetics and gas exchange. Elsevier/North-Holland, Amsterdam, pp 211–222

    Google Scholar 

  • Swanson GD, Sherrill DL (1983) A model evaluation of estimates of breath-to-breath alveolar gas exchange. J Appl Physiol Respir Environ Exerc Physiol 55:1936–1941

    CAS  PubMed  Google Scholar 

  • Tanner RK, Gore CJ (eds) (2013) Australian Sports Commission. Physiological tests for elite athletes, 2nd edn. Human Kinetics, Champaign, pp 103–122

    Google Scholar 

  • Ward SA, Davis JA, Weissman ML, Wasserman K, Whipp BJ (1979) Lung gas stores and the kinetics of gas exchange during exercise. Physiologist 22(4):129

    CAS  Google Scholar 

  • Ward SA, Grocott MPW, Levett DZH (2017) Exercise testing, hypoxia, and supplemental oxygen. Ann Am Thorac Soc 14(suppl 1):S140-S148

    PubMed  Google Scholar 

  • Wasserman K, Hansen JE, Sue DY, Stringer WW, Sietsema KE, Sun XG, Whipp BJ (2011) Principles of exercise testing and interpretation, 5th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Webb P, Troutman SJ Jr (1970) An instrument for continuous measurement of oxygen consumption. J Appl Physiol 28:867–871

    Article  CAS  PubMed  Google Scholar 

  • Wessel HU, Stout RL, Bastanier CK, Paul MH (1979) Breath-by-breath variation of FRC: effect on \(\dot {V}{{\text{O}}_2}\) and \(\dot {V}{\text{C}}{{\text{O}}_2}\) measured at the mouth. J Appl Physiol: Respir Environ Exer Physiol 46:1122–1126

    Article  CAS  Google Scholar 

  • Wessel HU, Stout RL, Paul MH (1983) Breath-by-breath determination of alveolar gas exchange. J Appl Physiol: Respir Environ Exer Physiol 54:598–599

    Article  CAS  Google Scholar 

  • Whipp BJ (1978) Tenets of the exercise hyperpnea and their degree of corroboration. Chest 73S:274–277

    Article  Google Scholar 

  • Whipp BJ, Rossiter HB (2005) The kinetics of oxygen uptake: physiological inferences from the parameters. In: Jones AM, Poole DC (eds) Oxygen uptake kinetics in health and disease. Routledge, London, pp 64–94

    Google Scholar 

  • Whipp BJ, Ward SA, Lamarra N, Davis JA, Wasserman K (1982) Parameters of ventilatory and gas exchange dynamics during exercise. J Appl Physiol 52:1506–1513

    Article  CAS  PubMed  Google Scholar 

  • Whipp BJ, Ward SA, Wasserman K (1986) Respiratory markers of the anaerobic threshold. Adv Cardiol 35:47–64

    Article  CAS  PubMed  Google Scholar 

  • Whipp BJ, Ward SA, Rossiter HB (2005) Pulmonary O2 uptake during exercise: conflating muscular and cardiovascular responses. Med Sci Sports Exerc 37:1574–1585

    Article  CAS  PubMed  Google Scholar 

  • Whipp BJ, Stirling JR, Zakynthinaki MS (2009) Point: Counterpoint “The kinetics of oxygen uptake during muscular exercise do/do not manifest time-delayed phases”. J Appl Physiol 107:1663–1668

    Article  PubMed  Google Scholar 

  • Whittaker ET (1915) On the functions which are represented by the expansions of the interpolation theory. Proc Royal Soc Edinburgh Sec A 35:181–194

    Article  Google Scholar 

  • Wilmore JH, Costill DL (1973) Adequacy of the Haldane transformation in the computation of exercise \(\dot {V}{{\text{O}}_2}\) in man. J Appl Physiol 35:85–89

    Article  CAS  PubMed  Google Scholar 

  • Wilmore JH, Costill DL (1974) Semiautomated systems approach to the assessment of oxygen uptake during exercise. J Appl Physiol 36:618 – 20

    Article  CAS  PubMed  Google Scholar 

  • Wilmore JH, Davis JA, Norton AC (1976) An automated system for assessing metabolic and respiratory function during exercise. J Appl Physiol 40:619–624

    Article  CAS  PubMed  Google Scholar 

  • Wilmore JH, Stanforth PR, Turley KR, Gagnon J, Daw EW, Leon AS, Rao DC, Skinner JS, Bouchard C (1998) Reproducibility of cardiovascular, respiratory, and metabolic responses to submaximal exercise: the HERITAGE Family Study. Med Sci Sports Exerc 30:259–265

    Article  CAS  PubMed  Google Scholar 

  • Winter EM, Jones AM, Davison R.C.R., Bromley PD, Mercer TH (eds) (2007) Sport and exercise physiology testing guidelines, vol 1 Sport testing: The British Association of Sport and Exercise Sciences guide. Routledge, Abingdon

    Google Scholar 

  • Wüst RC, Aliverti A, Capelli C, Kayser B (2008) Breath-by-breath changes of lung oxygen stores at rest and during exercise in humans. Resp Phys Neurobiol 164:291–299

    Article  Google Scholar 

  • Yamamoto Y, Takei Y, Mokushi K, Morita H, Mutoh Y, Miyashita M (1987) Breath-by-breath measurement of alveolar gas exchange with a slow-response gas analyser. Med Biol Eng Comput 25:141–146

    Article  CAS  PubMed  Google Scholar 

  • Yeh MP, Adams TD, Gardner RM, Yanowitz FG (1987) Turbine flowmeter vs. Fleisch pneumotachometer: a comparative study for exercise testing. J Appl Physiol 63:1289–1129

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I dedicate this article to the late Brian James Whipp PhD, DSc, to whom I remain indebted for his mentorship and collaboration in our journeys through kinetic analysis in exercise.

Author information

Authors and Affiliations

Authors

Contributions

The author (SAW) was solely responsible for the preparation of this manuscript.

Corresponding author

Correspondence to Susan A. Ward.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Communicated by Michael Lindinger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ward, S.A. Open-circuit respirometry: real-time, laboratory-based systems. Eur J Appl Physiol 118, 875–898 (2018). https://doi.org/10.1007/s00421-018-3860-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-018-3860-9

Keywords

Navigation