Skip to main content
Log in

Numerical simulations of solid particles dispersion during double-diffusive convection of a nanofluid in a cavity with a wavy source

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This study attempts to address the dispersion of the solid particles in nanofluid flow throughout the double-diffusive convection under the impacts of buoyancy ratio, magnetic field and three different boundary conditions. The main target of this study is to examine the mixing processes between solid particles and nanofluid flow at natural convection flow. An incompressible scheme of smoothed particle hydrodynamics (ISPH) is applied to study the dispersion processes of solid particles through the nanofluid flow. The mesh-free nature of ISPH method is helpful in handling the interactions between solid and fluid particles in an easy way. The sidewalls are wavy walls, and the solid particles are embedded in an open circular cylinder positioned in the cavity center. The numerical simulations are performed for various values of buoyancy ratio \(\left( { - 2 \le N \le 2} \right)\), Hartman parameter \(\left( {0 \le {\text{Ha}} \le 100} \right)\), Lewis number \(\left( {0 \le {\text{Le}} \le 50} \right)\), nanoparticles parameter \(\left( {0 \le \phi \le 0.1} \right)\), wave amplitude \(\left( {0.05 \le A \le 0.15} \right)\) and wave undulation number \(\left( {2 \le \kappa \le 10} \right)\). Results show that the variations on the boundary conditions of heat and mass differentiate dramatically the direction of solid particles dispersion in a cavity. Buoyancy ratio is playing a main role in direction of the solid particles dispersion, and Hartman parameter reduces the solid particles dispersion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

\(A\) :

Wave amplitude

\(a\) :

Length of a wavy shape (m)

\({\mathbf{B}}\) :

Magnetic field vector

\(B_{0}\) :

Magnitude of magnetic field

\(C\) :

Concentration

\(C_{p}\) :

Heat capacity

\(D\) :

Mass diffusivity (m2/s)

Ha:

Hartman parameter

g :

Gravitational acceleration (m/s2)

\(k\) :

Thermal conductivity (W/m K)

\(L\) :

Cavity length

\(L_{\text{w}}\) :

Total length of a wavy shape

Le:

Lewis number

\(N\) :

Buoyancy ratio parameter

\({\mathbf{n}}\) :

Normal vector

\(\kappa\) :

Undulation number

\(\overline{\text{Nu}}_{w}\) :

Average Nusselt number

\(np\) :

Total number of particles

\(m\) :

Mass (kg)

\(P\) :

Dimensionless pressure

\(p\) :

Dimensional pressure (N/m2)

Pr:

Prandtl number

Ra:

Rayleigh number

\(r_{\text{c}}\) :

Radius of the circular cylinder

\(\overline{\text{Sh}}_{w}\) :

Average Sherwood number

\(T\) :

Temperature (K)

\(t\) :

Time (s)

\(u, v\) :

Dimension velocity components (m/s)

\(W\) :

Kernel function

\(W_{\text{G}}\) :

Width of a circular cylinder gate

\(U, V\) :

Dimensionless velocity components

\(x, y\) :

Cartesian coordinates (m)

\(X, Y\) :

Dimensionless coordinates

\(\alpha\) :

Thermal diffusivity (m2/s)

\(\beta\) :

Thermal expansion coefficient (K−1)

\(\gamma\) :

Kernel renormalization factor

\(\Phi\) :

Dimensionless concentration

\(\phi\) :

Solid volume fraction

\(\mu\) :

Dynamic viscosity

\(\psi\) :

Stream function

\(\lambda\) :

Phase deviation

\(\rho\) :

Density (kg/m3)

\(\tau\) :

Dimensionless time

\(\theta\) :

Dimensionless temperature

\(\sigma\) :

Electrical conductivity

\(\zeta\) :

Hot source length

f:

Fluid

nf:

Nanofluid

h:

Hot

C:

Cold

i:

Target particle

j:

Neighbor particle

References

  1. Boussinesq, J.: Essai sur la thèorie des eaux courantes [Essay on the theory of flowing waters]. Mem Acadèmie des Sciences 23, 252–260 (1877)

    Google Scholar 

  2. Marble, F.E.: Dynamics of a gas containing small solid particles. In: Proceedings of 5th AGARD Combustion and Propulsion Colloquim, pp. 175–215. Pergamon Press, New York (1963)

  3. Murray, J.: On the mathematics of fluidization Part 1. Fundamental equations and wave propagation. J. Fluid Mech. 21, 465–493 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  4. Markham, B.L., Rosenberger, F.: Diffusive-convective vapor transport across horizontal and inclined rectangular enclosures. J. Cryst. Growth 67, 241–254 (1984)

    Article  Google Scholar 

  5. Bergman, T.L., Incropera, F.P., Viskanta, R.: Correlation of mixed layer growth in a double-diffusive, salt-stratified system heated from below. J. Heat Transf. 108, 206–211 (1986)

    Article  Google Scholar 

  6. Nishimura, T., Imoto, T., Miyashita, H.: Occurrence and development of double-diffusive convection during solidification of a binary system. Int. J. Heat Mass Transf. 37, 1455–1464 (1994)

    Article  Google Scholar 

  7. Yan, W.-M.: Combined buoyancy effects of thermal and mass diffusion on laminar forced convection in horizontal rectangular ducts. Int. J. Heat Mass Transf. 39, 1479–1488 (1996)

    Article  MATH  Google Scholar 

  8. Gasljevic, K., Aguilar, G., Matthys, E.F.: Buoyancy effects on heat transfer and temperature profiles in horizontal pipe flow of drag-reducing fluids. Int. J. Heat Mass Transf. 43, 4267–4274 (2000)

    Article  MATH  Google Scholar 

  9. Kuznetsov, G.V., Sheremet, M.A.: A numerical simulation of double-diffusive conjugate natural convection in an enclosure. Int. J. Therm. Sci. 50, 1878–1886 (2011)

    Article  Google Scholar 

  10. Trevisan, O.V., Bejan, A.: Natural convection with combined heat and mass transfer buoyancy effects in a porous medium. Int. J. Heat Mass Transf. 28, 1597–1611 (1985)

    Article  Google Scholar 

  11. Mahapatra, T.R., Pal, D., Mondal, S.: Effects of buoyancy ratio on double-diffusive natural convection in a lid-driven cavity. Int. J. Heat Mass Transf. 57, 771–785 (2013)

    Article  Google Scholar 

  12. Moukalled, F., Darwish, M.: Effect of buoyancy ratio on double-diffusive natural convection in a porous rhombic annulus. Heat Transf. Eng. 36, 1371–1386 (2015)

    Article  Google Scholar 

  13. Mahian, O., Kianifar, A., Kalogirou, S.A., Pop, I., Wongwises, S.: A review of the applications of nanofluids in solar energy. Int. J. Heat Mass Transf. 57, 582–594 (2013)

    Article  Google Scholar 

  14. Wang, Y., Liu, Q., Lei, J., Jin, H.: Performance analysis of a parabolic trough solar collector with non-uniform solar flux conditions. Int. J. Heat Mass Transf. 82, 236–249 (2015)

    Article  Google Scholar 

  15. Muhammad, M.J., Muhammad, I.A., Sidik, N.A.C., Yazid, M.N.A.W.M., Mamat, R., Najafi, G.: The use of nanofluids for enhancing the thermal performance of stationary solar collectors: a review. Renew. Sustain. Energy Rev. 63, 226–236 (2016)

    Article  Google Scholar 

  16. Elsheikh, A., Sharshir, S., Mostafa, M.E., Essa, F., Ali, M.K.A.: Applications of nanofluids in solar energy: a review of recent advances. Renew. Sustain. Energy Rev. 82, 3483–3502 (2018)

    Article  Google Scholar 

  17. Khanafer, K., Vafai, K.: A review on the applications of nanofluids in solar energy field. Renew. Energy 123, 398–406 (2018)

    Article  Google Scholar 

  18. Molana, M.: A comprehensive review on the nanofluids application in the tubular heat exchangers. Am. J. Heat Mass Transf. Adv. Process Model. 3, 352–381 (2016)

    Google Scholar 

  19. Diglio, G., Roselli, C., Sasso, M., Jawali Channabasappa, U.: Borehole heat exchanger with nanofluids as heat carrier. Geothermics 72, 112–123 (2018)

    Article  Google Scholar 

  20. Kakavand, H., Molana, M.J.H.T.A.R.: A numerical study of heat transfer charcteristics of a car radiator involved nanofluids. Heat Transf. Asian Res. 47, 88–102 (2018)

    Article  Google Scholar 

  21. Molana, M.: On the nanofluids application in the automotive radiator to reach the enhanced thermal performance: a review. Am. J. Heat Mass Transf. Adv. Process Model. 4, 168–187 (2017)

    Google Scholar 

  22. Sheikhzadeh, G., Hajilou, M., Jafarian, H.: Analysis of thermal performance of a car radiator employing nanofluid. Int. J. Mech. Eng. Appl. 2, 47–51 (2014)

    Google Scholar 

  23. Buongiorno, J., Hu, L.-W., Kim, S.J., Hannink, R., Truong, B., Forrest, E.: Nanofluids for enhanced economics and safety of nuclear reactors: an evaluation of the potential features, issues, and research gaps. Nucl. Technol. 162, 80–91 (2008)

    Article  Google Scholar 

  24. Buongiorno, J., Hu, L.W., Apostolakis, G., Hannink, R., Lucas, T., Chupin, A.: A feasibility assessment of the use of nanofluids to enhance the in-vessel retention capability in light-water reactors. Nucl. Eng. Des. 239, 941–948 (2009)

    Article  Google Scholar 

  25. Sadeghi, M.S., Anadalibkhah, N., Ghasemiasl, R., Armaghani, T., Dogonchi, A.S., Chamkha, A.J., Ali, H., Asadi, A.: On the natural convection of nanofluids in diverse shapes of enclosures: an exhaustive review. J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-10222-y

    Article  Google Scholar 

  26. Dogonchi, A.S., Nayak, M.K., Karimi, N., Chamkha, A.J., Ganji, D.D.: Numerical simulation of hydrothermal features of Cu–H2O nanofluid natural convection within a porous annulus considering diverse configurations of heater. J. Therm. Anal. Calorim. 141, 2109–2125 (2020)

    Article  Google Scholar 

  27. Sadeghi, M.S., Tayebi, T., Dogonchi, A.S., Armaghani, T., Talebizadehsardari, P.: Analysis of hydrothermal characteristics of magnetic Al2O3–H2O nanofluid within a novel wavy enclosure during natural convection process considering internal heat generation, Math Meth Appl Sci. 2020. https://doi.org/10.1002/mma.6520

  28. Hashemi-Tilehnoee, M., Dogonchi, A.S., Seyyedi, S.M., Chamkha, A.J., Ganji, D.D.: Magnetohydrodynamic natural convection and entropy generation analyses inside a nanofluid-filled incinerator-shaped porous cavity with wavy heater block. J. Therm. Anal. Calorim. 141, 2033–2045 (2020)

    Article  Google Scholar 

  29. Dogonchi, A.S., Tayebi, T., Chamkha, A.J., Ganji, D.D.: Natural convection analysis in a square enclosure with a wavy circular heater under magnetic field and nanoparticles. J. Therm. Anal. Calorim. 139, 661–671 (2020)

    Article  Google Scholar 

  30. Aly, A.M.: Natural convection over circular cylinders in a porous enclosure filled with a nanofluid under thermo-diffusion effects. J. Taiwan Inst. Chem. Eng. 70, 88–103 (2017)

    Article  Google Scholar 

  31. Parvin, S., Nasrin, R., Alim, M., Hossain, N.: Double-diffusive natural convection in a partially heated enclosure using a nanofluid. J Heat Transf. Asian Res. 41, 484–497 (2012)

    Article  Google Scholar 

  32. Abdelraheem, M.A.: Incompressible smoothed particle hydrodynamics for MHD double-diffusive natural convection of a nanofluid in a cavity containing an oscillating pipe. Int. J. Numer. Methods Heat Fluid Flow 30, 882–917 (2019)

    Article  Google Scholar 

  33. Aly, A.M., Asai, M.: Double-diffusive natural convection with cross-diffusion effects in an anisotropic porous enclosure using ISPH method. In: Mass Transfer: Advancement in Process Modelling, p. 65 (2015)

  34. Aly, A.M.: Double-diffusive natural convection in an enclosure including/excluding sloshing rod using a stabilized ISPH method. Int. Commun. Heat Mass Transf. 73, 84–99 (2016)

    Article  Google Scholar 

  35. Nguyen, M.T., Aly, A.M., Lee, S.-W.: Effect of a wavy interface on the natural convection of a nanofluid in a cavity with a partially layered porous medium using the ISPH method. Numer. Heat Transf. Part A Appl. 72, 68–88 (2017)

    Article  Google Scholar 

  36. Raizah, Z.A.S., Aly, M., A., : ISPH method for MHD double-diffusive natural convection of a nanofluid within cavity containing open pipes. Int. J. Numer. Meth. Heat Fluid Flow. 30(7), 3607–3634 (2019). https://doi.org/10.1108/HFF-08-2019-0658

    Article  Google Scholar 

  37. Kefayati, G.R.: FDLBM simulation of mixed convection in a lid-driven cavity filled with non-Newtonian nanofluid in the presence of magnetic field. Int. J. Therm. Sci. 95, 29–46 (2015)

    Article  Google Scholar 

  38. Xuan, Y., Roetzel, W.: Conceptions for heat transfer correlation of nanofluids. Int. J. Heat Mass Transf. 43, 3701–3707 (2000)

    Article  MATH  Google Scholar 

  39. Mahapatra, T., Saha, B.C., Pal, D.: Magnetohydrodynamic double-diffusive natural convection for nanofluid within a trapezoidal enclosure. Comput. Appl. Math. 37, 6132–6151 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lind, S.J., Xu, R., Stansby, P.K., Rogers, B.D.: Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves. J. Comput. Phys. 231, 1499–1523 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Skillen, A., Lind, S., Stansby, P.K., Rogers, B.D.: Incompressible smoothed particle hydrodynamics (SPH) with reduced temporal noise and generalised Fickian smoothing applied to body–water slam and efficient wave–body interaction. Comput. Methods Appl. Mech. Eng. 265, 163–173 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Nguyen, M.T., Aly, A.M., Lee, S.-W.: ISPH modeling of natural convection heat transfer with an analytical kernel renormalization factor. Meccanica 53, 2299–2318 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  43. Nguyen, T.M., Aly, A.M., Lee, S.-W.: Improved wall boundary conditions in the incompressible smoothed particle hydrodynamics method. Int. J. Numer. Methods Heat Fluid Flow 28, 704–725 (2018)

    Article  Google Scholar 

  44. Paroncini, M., Corvaro, F.: Natural convection in a square enclosure with a hot source. Int. J. Therm. Sci. 48, 1683–1695 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through the research groups program under Grant Number (R.G.P2/17/42).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehab Mahmoud Mohamed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aly, A.M., Mohamed, E.M. Numerical simulations of solid particles dispersion during double-diffusive convection of a nanofluid in a cavity with a wavy source. Arch Appl Mech 91, 2089–2108 (2021). https://doi.org/10.1007/s00419-020-01871-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01871-4

Keywords

Navigation