Skip to main content
Log in

Conjugate natural convection of nanofluids inside an enclosure filled by three layers of solid, porous medium and free nanofluid using Buongiorno’s and local thermal non-equilibrium models

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The natural convective heat transfer of nanofluids was addressed inside a square enclosure filled by three different layers: solid, porous medium and free fluid. The behavior of the porous layer has been simulated using local thermal non-equilibrium model. The Buongiorno’s model was utilized to evaluate the distribution of nanoparticles inside the enclosure that arose from the thermophoresis and Brownian motion. The governing equations were solved by the Galerkin finite element method in a non-uniform grid. The governing parameters are Rayleigh number Ra = 103–106, porosity ε = 0.3–0.9, Darcy number Da = 10−5–10−2, interface parameter Kr = 0.1–10, H = 0.1–1000; ratio of wall thermal conductivity to that of the nanofluid, Rk = 0.1–10, dimensionless length of the heater B = 0.2–0.8; dimensionless centre position height of the heater Z = 0.3–0.7 and Lewis number Le = 10–100. A considerable concentration gradient of nanoparticles was found inside the enclosure. In some studied cases, the non-dimensional volume fraction of nanoparticles is about 10% higher than the average volume fraction of nanoparticles at the region near the cold wall. The variability of Darcy and the Rayleigh numbers indicated significant effects on heat transfer rate and the concentration patterns of the nanoparticles and inward the cavity. The increase in Le and Nr amplifies and decreases the heat transfer rates through fluid and solid phases, respectively. In addition, it can be seen that the increment in heat transfer rates with Le increases as Nr increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

b :

Length of the heater (m)

B :

Dimensionless length of the heater

C :

Nanoparticle volume fraction

C 0 :

Ambient nanoparticle volume fraction

d :

Wall thickness (m)

D :

Dimensionless wall thickness

Da :

Darcy number

D B :

Brownian diffusion coefficient

D T :

Thermophoresis diffusion coefficient

g :

Gravitational acceleration vector (m s−2)

h nfs :

Volumetric heat transfer coefficient between the nanofluid and solid porous matrix (W m−3 K−1)

H :

Interface heat transfer coefficient parameter

k :

Thermal conductivity (W m−1 K−1)

K :

Permeability of the porous medium (m2)

K r :

Nanofluid to solid porous matrix thermal conductivity ratio parameter

L :

Square cavity size (m)

Le :

Lewis number

n :

Normal vector (m)

N :

Dimensionless normal vector

Nb :

Brownian motion parameter

Nr :

Buoyancy ratio parameter

Nt :

Thermophoresis parameter

Nu :

Local Nusselt number

\( \overline{Nu} \) :

Average Nusselt number

p :

Pressure (Pa)

P :

Dimensionless pressure

Pr :

Prandtl number

\( q_{\text{i}} \) :

Total interfacial heat flux (W m−2)

Q w :

Dimensionless local heat transfer through the wall

\( \overline{{Q_{\text{w}} }} \) :

Dimensionless average heat transfer through the wall

Ra :

Rayleigh number

R k :

Wall to nanofluid thermal conductivity ratio parameter

s :

Porous layer thickness (m)

S :

Dimensionless porous layer thickness

Sh :

Local Sherwood number

T :

Temperature (K)

u, v :

Velocity components along x, y directions, respectively (m s−1)

U, V :

Dimensionless velocity components along x, y directions, respectively

x, y :

Cartesian coordinates (m)

X, Y :

Dimensionless Cartesian coordinates

z :

Center position height of the heater (m)

Z :

Dimensionless center position height of the heater

α :

Effective thermal diffusivity (m2 s−1)

β :

Thermal expansion coefficient of the fluid (K−1)

Δ:

Difference value

ε :

Porosity of the porous medium

θ :

Dimensionless temperature

μ :

Dynamic viscosity (kg m−1 s−1)

ν :

Kinematic viscosity (m2 s−1)

ρ :

Density (kg m−3)

(ρc):

Effective heat capacity (J K−1 m−3)

τ :

Parameter defined by τ = (ρc)p/(ρc)nf

ϕ :

Relative nanoparticle volume fraction

Ψ :

Dimensionless stream function

0:

Ambient property

c:

Cold

eff:

Effective

h:

Hot

max:

Maximum

nf:

Nanofluid

p:

Nanoparticle

s:

Solid porous matrix

w:

Wall

References

  1. Mehryan S, et al. Fluid–structure interaction analysis of free convection in an inclined square cavity partitioned by a flexible impermeable membrane with sinusoidal temperature heating. Meccanica. 2017;52(11–12):2685–703.

    Article  Google Scholar 

  2. Mehryan S, et al. Analysis of fluid–solid interaction in MHD natural convection in a square cavity equally partitioned by a vertical flexible membrane. J Magn Magn Mater. 2017;424:161–73.

    Article  CAS  Google Scholar 

  3. Chamkha A, et al. Phase-change heat transfer of single/hybrid nanoparticles-enhanced phase-change materials over a heated horizontal cylinder confined in a square cavity. Adv Powder Technol. 2017;28(2):385–97.

    Article  CAS  Google Scholar 

  4. Ghalambaz M, et al. Phase-change heat transfer in a cavity heated from below: the effect of utilizing single or hybrid nanoparticles as additives. J Taiwan Inst Chem Eng. 2017;72:104–15.

    Article  CAS  Google Scholar 

  5. Babcsán N, Beke S, Makk P. Method of producing a metal foam by oscillations and thus obtained metal foam product. Google Patents; 2015.

  6. Babcsan N, et al. Pilot production and properties of ALUHAB aluminium foams. Procedia Mater Sci. 2014;4:127–32.

    Article  CAS  Google Scholar 

  7. Sheikholeslami M, Shehzad S. Simulation of water based nanofluid convective flow inside a porous enclosure via non-equilibrium model. Int J Heat Mass Transf. 2018;120:1200–12.

    Article  CAS  Google Scholar 

  8. Sheikholeslami M, Seyednezhad M. Simulation of nanofluid flow and natural convection in a porous media under the influence of electric field using CVFEM. Int J Heat Mass Transf. 2018;120:772–81.

    Article  CAS  Google Scholar 

  9. Sheikholeslami M. Numerical investigation for CuO-H2O nanofluid flow in a porous channel with magnetic field using mesoscopic method. J Mol Liq. 2018;249:739–46.

    Article  CAS  Google Scholar 

  10. Nield DA, Bejan A. Convection in porous media. New York: Springer; 2006.

    Google Scholar 

  11. Sheremet MA, Trifonova TA. Unsteady conjugate natural convection in a vertical cylinder partially filled with a porous medium. Numer Heat Transf A Appl. 2013;64(12):994–1015.

    Article  CAS  Google Scholar 

  12. Baytas AC, Pop I. Free convection in a square porous cavity using a thermal nonequilibrium model. Int J Therm Sci. 2002;41(9):861–70.

    Article  Google Scholar 

  13. Sheremet MA, Pop I. Free convection in a triangular cavity filled with a porous medium saturated by a nanofluid: Buongiorno’s mathematical model. Int J Numer Methods Heat Fluid Flow. 2015;25(5):1138–61.

    Article  Google Scholar 

  14. Mehryan S, Izadi M, Sheremet MA. Analysis of conjugate natural convection within a porous square enclosure occupied with micropolar nanofluid using local thermal non-equilibrium model. J Mol Liq. 2018;250:353–68.

    Article  CAS  Google Scholar 

  15. Hashemi H, Namazian Z, Mehryan S. Cu-water micropolar nanofluid natural convection within a porous enclosure with heat generation. J Mol Liq. 2017;236:48–60.

    Article  CAS  Google Scholar 

  16. Mehryan S, et al. Free convection of hybrid Al2O3–Cu water nanofluid in a differentially heated porous cavity. Adv Powder Technol. 2017;28(9):2295–305.

    Article  CAS  Google Scholar 

  17. Vafai K. Handbook of porous media. Boca Raton: CRC Press; 2015.

    Book  Google Scholar 

  18. Saeid NH. Conjugate natural convection in a porous enclosure sandwiched by finite walls under thermal nonequilibrium conditions. J Porous Media. 2008;11(3):259–75

    Article  Google Scholar 

  19. Yang K, Vafai K. Analysis of heat flux bifurcation inside porous media incorporating inertial and dispersion effects—an exact solution. Int J Heat Mass Transf. 2011;54(25):5286–97.

    Article  Google Scholar 

  20. Nield D. A note on local thermal non-equilibrium in porous media near boundaries and interfaces. Transport in porous media; 2012: p. 1–4.

  21. Lomascolo M, et al. Review of heat transfer in nanofluids: conductive, convective and radiative experimental results. Renew Sustain Energy Rev. 2015;43:1182–98.

    Article  CAS  Google Scholar 

  22. Angayarkanni S, Philip J. Review on thermal properties of nanofluids: recent developments. Adv Coll Interface Sci. 2015;225:146–76.

    Article  CAS  Google Scholar 

  23. Öztop HF, et al. A brief review of natural convection in enclosures under localized heating with and without nanofluids. Int Commun Heat Mass Transf. 2015;60:37–44.

    Article  CAS  Google Scholar 

  24. Sheikholeslami M, Darzi M, Sadoughi M. Heat transfer improvement and pressure drop during condensation of refrigerant-based nanofluid; an experimental procedure. Int J Heat Mass Transf. 2018;122:643–50.

    Article  CAS  Google Scholar 

  25. Sheikholeslami M, Rokni HB. CVFEM for effect of Lorentz forces on nanofluid flow in a porous complex shaped enclosure by means of non-equilibrium model. J Mol Liq. 2018;254:446–62.

    Article  CAS  Google Scholar 

  26. Sheikholeslami M, Rokni HB. Numerical simulation for impact of Coulomb force on nanofluid heat transfer in a porous enclosure in presence of thermal radiation. Int J Heat Mass Transf. 2018;118:823–31.

    Article  CAS  Google Scholar 

  27. Sheikholeslami M, Shehzad S. Numerical analysis of Fe3O4–H2O nanofluid flow in permeable media under the effect of external magnetic source. Int J Heat Mass Transf. 2018;118:182–92.

    Article  CAS  Google Scholar 

  28. Sheikholeslami M, Rokni HB. Magnetic nanofluid flow and convective heat transfer in a porous cavity considering Brownian motion effects. Phys Fluids. 2018;30(1):012003.

    Article  CAS  Google Scholar 

  29. Saidur R, Leong K, Mohammad H. A review on applications and challenges of nanofluids. Renew Sustain Energy Rev. 2011;15(3):1646–68.

    Article  CAS  Google Scholar 

  30. Sheremet MA, Pop I, Shenoy A. Natural convection in a wavy open porous cavity filled with a nanofluid: Tiwari and Das’ nanofluid model. Eur Phys J Plus. 2016;131:62.

    Article  CAS  Google Scholar 

  31. Izadi M, et al. Numerical study of developed laminar mixed convection of Al2O3/water nanofluid in an annulus. Chem Eng Commun. 2013;200(7):878–94.

    Article  CAS  Google Scholar 

  32. Izadi M, Behzadmehr A, Shahmardan M. Effects of inclination angle on laminar mixed convection of a nanofluid flowing through an annulus. Chem Eng Commun. 2015;202(12):1693–702.

    Article  CAS  Google Scholar 

  33. Izadi M, Behzadmehr A, Shahmardan MM. Effects of discrete source-sink arrangements on mixed convection in a square cavity filled by nanofluid. Korean J Chem Eng. 2014;31(1):12–9.

    Article  CAS  Google Scholar 

  34. Buongiorno J. Convective transport in nanofluids. J Heat Transfer. 2006;128(3):240–50.

    Article  Google Scholar 

  35. Izadi M, et al. Nanoparticle migration and natural convection heat transfer of Cu-water nanofluid inside a porous undulant-wall enclosure using LTNE and two-phase model. J Mol Liq. 2018;261:357–72.

    Article  CAS  Google Scholar 

  36. Hoghoughi G, et al. Effect of geometrical parameters on natural convection in a porous undulant-wall enclosure saturated by a nanofluid using Buongiorno’s model. J Mol Liq. 2018;255:148–59.

    Article  CAS  Google Scholar 

  37. Noghrehabadi A, Izadpanahi E, Ghalambaz M. Analyze of fluid flow and heat transfer of nanofluids over a stretching sheet near the extrusion slit. Comput Fluids. 2014;100:227–36.

    Article  Google Scholar 

  38. Sheremet MA, Pop I, Shenoy A. Unsteady free convection in a porous open wavy cavity filled with a nanofluid using Buongiorno’s mathematical model. Int Commun Heat Mass Transf. 2015;67:66–72.

    Article  CAS  Google Scholar 

  39. Sheremet MA, Pop I, Rahman M. Three-dimensional natural convection in a porous enclosure filled with a nanofluid using Buongiorno’s mathematical model. Int J Heat Mass Transf. 2015;82:396–405.

    Article  Google Scholar 

  40. Pop I, Ghalambaz M, Sheremet M. Free convection in a square porous cavity filled with a nanofluid using thermal non equilibrium and Buongiorno models. Int J Numer Methods Heat Fluid Flow. 2016;26(3/4):671–93.

    Article  Google Scholar 

  41. Sabour M, Ghalambaz M. Natural convection in a triangular cavity filled with a nanofluid-saturated porous medium using three heat equation model. Can J Phys. 2016;94(6):604–15.

    Article  CAS  Google Scholar 

  42. Sheremet M, Cimpean D, Pop I. Free convection in a partially heated wavy porous cavity filled with a nanofluid under the effects of Brownian diffusion and thermophoresis. Appl Therm Eng. 2017;113:413–8.

    Article  CAS  Google Scholar 

  43. Zaraki A, et al. Theoretical analysis of natural convection boundary layer heat and mass transfer of nanofluids: effects of size, shape and type of nanoparticles, type of base fluid and working temperature. Adv Powder Technol. 2015;26(3):935–46.

    Article  CAS  Google Scholar 

  44. Sheremet MA, Groşan T, Pop I. Free convection in shallow and slender porous cavities filled by a nanofluid using Buongiorno’s model. J Heat Transf. 2014;136(8):082501.

    Article  Google Scholar 

  45. Alsabery A, et al. Heatline visualization of conjugate natural convection in a square cavity filled with nanofluid with sinusoidal temperature variations on both horizontal walls. Int J Heat Mass Transf. 2016;100:835–50.

    Article  Google Scholar 

  46. Alsabery A, et al. Transient natural convective heat transfer in a trapezoidal cavity filled with non-Newtonian nanofluid with sinusoidal boundary conditions on both sidewalls. Powder Technol. 2017;308:214–34.

    Article  CAS  Google Scholar 

  47. Sheikholeslami M, Ganji D. Numerical approach for magnetic nanofluid flow in a porous cavity using CuO nanoparticles. Mater Des. 2017;120:382–93.

    Article  CAS  Google Scholar 

  48. Sheikholeslami M, Chamkha AJ. Flow and convective heat transfer of a ferro-nanofluid in a double-sided lid-driven cavity with a wavy wall in the presence of a variable magnetic field. Numer Heat Transf A Appl. 2016;69(10):1186–200.

    Article  CAS  Google Scholar 

  49. Bondareva NS, et al. Heatline visualization of natural convection in a thick walled open cavity filled with a nanofluid. Int J Heat Mass Transf. 2017;109:175–86.

    Article  CAS  Google Scholar 

  50. Sheikholeslami M, Chamkha AJ. Influence of Lorentz forces on nanofluid forced convection considering Marangoni convection. J Mol Liq. 2017;225:750–7.

    Article  CAS  Google Scholar 

  51. Reddy PS, Chamkha AJ. Heat and mass transfer characteristics of nanofluid over horizontal circular cylinder. Ain Shams Eng J. 2016;5:505–13.

    Google Scholar 

  52. Reddy PS, Chamkha AJ, Al-Mudhaf A. MHD heat and mass transfer flow of a nanofluid over an inclined vertical porous plate with radiation and heat generation/absorption. Adv Powder Technol. 2017;28(3):1008–17.

    Article  Google Scholar 

  53. Sheremet MA, Pop I, Roşca NC. Magnetic field effect on the unsteady natural convection in a wavy-walled cavity filled with a nanofluid: Buongiorno’s mathematical model. J Taiwan Insti Chem Eng. 2016;61:211–22.

    Article  CAS  Google Scholar 

  54. Sheremet MA, Revnic C, Pop I. Free convection in a porous wavy cavity filled with a nanofluid using Buongiorno’s mathematical model with thermal dispersion effect. Appl Math Comput. 2017;299:1–15.

    Google Scholar 

  55. Kasaeian A, et al. Nanofluid flow and heat transfer in porous media: a review of the latest developments. Int J Heat Mass Transf. 2017;107:778–91.

    Article  CAS  Google Scholar 

  56. Sheikholeslami M. CuO-water nanofluid flow due to magnetic field inside a porous media considering Brownian motion. J Mol Liq. 2018;249:921–9.

    Article  CAS  Google Scholar 

  57. Sheikholeslami M. Numerical investigation of nanofluid free convection under the influence of electric field in a porous enclosure. J Mol Liq. 2018;249:1212–21.

    Article  CAS  Google Scholar 

  58. Chamkha AJ, Selimefendigil F, Ismael MA. Mixed convection in a partially layered porous cavity with an inner rotating cylinder. Numer Heat Transf A Appl. 2016;69(6):659–75.

    Article  Google Scholar 

  59. Chamkha AJ, Ismael MA. Natural convection in differentially heated partially porous layered cavities filled with a nanofluid. Numer Heat Transf A Appl. 2014;65(11):1089–113.

    Article  CAS  Google Scholar 

  60. Alsabery A, et al. Heatline visualization of natural convection in a trapezoidal cavity partly filled with nanofluid porous layer and partly with non-Newtonian fluid layer. Adv Powder Technol. 2015;26(4):1230–44.

    Article  CAS  Google Scholar 

  61. Ismael MA, Chamkha AJ. Conjugate natural convection in a differentially heated composite enclosure filled with a nanofluid. J Porous Media. 2015;18(7):699–716.

    Article  Google Scholar 

  62. Sheikholeslami M, Shamlooei M, Moradi R. Fe3O4-ethylene glycol nanofluid forced convection inside a porous enclosure in existence of Coulomb force. J Mol Liq. 2018;249:429–37.

    Article  CAS  Google Scholar 

  63. Alazmi B, Vafai K. Analysis of fluid flow and heat transfer interfacial conditions between a porous medium and a fluid layer. Int J Heat Mass Transf. 2001;44(9):1735–49.

    Article  Google Scholar 

  64. Betchen L, Straatman AG, Thompson BE. A nonequilibrium finite-volume model for conjugate fluid/porous/solid domains. Numer Heat Transf A Appl. 2006;49(6):543–65.

    Article  Google Scholar 

  65. Kuznetsov A, Nield D. The Cheng–Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid: a revised model. Int J Heat Mass Transf. 2013;65:682–5.

    Article  CAS  Google Scholar 

  66. Reddy JN. An introduction to the finite element method, vol. 2. New York: McGraw-Hill; 1993.

    Google Scholar 

  67. Rao SS. The finite element method in engineering. Amsterdam: Elsevier; 2010.

    Google Scholar 

  68. Wriggers P. Nonlinear finite element methods. New York: Springer; 2008.

    Google Scholar 

Download references

Acknowledgements

Mohammad Ghalambaz is thankful to Dezful Branch Islamic Azad University of the financial support of the present study. The authors are tankful to Iran Nanotechnology Initiative Council (INIC) for its crucial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ghalambaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehryan, S.A.M., Ghalambaz, M. & Izadi, M. Conjugate natural convection of nanofluids inside an enclosure filled by three layers of solid, porous medium and free nanofluid using Buongiorno’s and local thermal non-equilibrium models. J Therm Anal Calorim 135, 1047–1067 (2019). https://doi.org/10.1007/s10973-018-7380-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7380-y

Keywords

Navigation