Skip to main content
Log in

Magnetohydrodynamic double-diffusive natural convection for nanofluid within a trapezoidal enclosure

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

Double-diffusive natural convection flow in a trapezoidal cavity with various aspect ratios in the presence of water-based nanofluid and applied magnetic field in the direction perpendicular to the bottom and top parallel walls is investigated. The bottom and top parallel walls are considered to be insulated, whereas left and right walls are assumed to be uniformly heated and cold, respectively. The numerical computation is carried out to find the streamlines, isotherms, isoconcentrations, average Nusselt number, and average Sherwood number. This study is done for various values of Rayleigh number \((10^{5}\le Ra \le 10^{7})\), Hartmann number \((0\le Ha \le 120)\), various aspect ratios \((0.5\le A \le 2)\), the solid volume fraction \((0\le \varphi \le 0.1)\), and the inclination angle of cavity \((\phi )\). It is found that the strength of vortex decreases/increases as the magnetic field parameter/aspect ratio increases. It is also found that increase in the Rayleigh number causes natural convection due to the increase in the buoyancy forces. In nanofluid, mass transfer ratio is more effective than base fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

x,  y :

Distance along x and y coordinate, m

X,  Y :

Dimensionless distance along x and y coordinate

u,  v :

x and y component of velocity, m s\(^{-1}\)

U,  V :

x and y component of dimensionless velocity

g :

Acceleration due to gravity, m s\(^{-2}\)

\(T,~T_\mathrm{h}\)\(T_\mathrm{c}\) :

Temperature of fluid, hot and cold wall, K

p :

Pressure, Pa

P :

Dimensionless pressure

L :

Length of the base of the trapezoidal cavity, m

D :

Mass diffusivity, m\(^{2}\) s\(^{-1}\)

\(C_\mathrm{p}\) :

Specific heat, J kg\(^{-1}\) K\(^{-1}\)

k :

Thermal conductivity, W m\(^{-1}\) K\(^{-1}\)

n :

Normal vector to the plane

Nu, \(\overline{Nu}\) :

Local and average Nusselt number

Pr :

Prandtl number

Ra :

Rayleigh number

\(B_{0}\) :

Magnetic field strength

Ha :

Hartmann number

Le :

Lewis number

\(c_\mathrm{h}\)\(c_\mathrm{c}\) :

Concentration of hot and cold walls

Sh, \(\overline{Sh}\) :

Local and average Sherwood number

N :

Buoyancy ratio

c :

Concentration

C :

Dimensionless concentration

\(\theta \) :

Dimensionless temperature

\(\phi \) :

Inclination angle with positive direction of x axis

\(\beta \) :

Volume expansion coefficient, K\(^{-1}\)

\(\mu \) :

Dynamic viscosity, kg m\(^{-1}\) s\(^{-1}\)

\(\nu \) :

Kinematic viscosity, m\(^{2}\) s\(^{-1}\)

\(\psi \) :

Dimensionless stream function

\(\rho \) :

Density, kg m\(^{-3}\)

\(\sigma \) :

Electrical conductivity, kg\(^{-1}\) m\(^{-3}\) s\(^{3}\) A\(^{2}\)

\(\alpha \) :

Thermal diffusivity, m\(^{2}\) s\(^{-1}\)

\(\varphi \) :

Volume fraction of the nanoparticle

\(\mathrm{p}\) :

Solid particles

\(\mathrm{r}\) :

Right wall

\(\mathrm{l}\) :

Left wall

\(\mathrm{nf}\) :

Nanofluid

\(\mathrm{f}\) :

Base fluid

References

  • Arani AAA, Kakoli E, Hajialigol N (2014) Double-diffusive natural convection of \(Al\_{2}O\_{3}\)-water nanofluid in an enclosure with partially active side walls using variable properties. J Mech Sci Technol 28(11):4681–4691

    Article  Google Scholar 

  • Arefmanesh A, Aghaei A, Ehteram H (2015) Mixed convection heat transfer in a CuO-water filled trapezoidal enclosure effects of various constant and variable properties of the nanofluid. Appl Math Model 000:1–17

    Google Scholar 

  • Basak T, Roy S, Singh SK, Pop I (2009) Finite element simulation of natural convection within porous trapezoidal enclosures for various inclination angles: Effect of various wall heating. Int J Heat Mass Transf 52:4135–4150

    Article  Google Scholar 

  • Basak T, Kumar P, Anandalakshmi R, Roy S (2012) Analysis of entropy generation minimization during natural convection in trapezoidal enclosures of various angles with linearly heated side walls. Ind Eng Chem Res 51:4069–4089

    Article  Google Scholar 

  • Brinkman HC (1952) The viscosity of concentrated suspensions and solution. J Chem Phys 20:571–581

    Article  Google Scholar 

  • Chen S, Liu H, Zheng CG (2012) Numerical study of turbulent double-diffusive natural convection in a square cavity by LES-based lattice Boltzmann model. Int J Heat Mass Transf 55:4862–4870

    Article  Google Scholar 

  • Chen S, Yang Bo, Luo Kai H, Xiong X, Zheng C (2016) Double diffusion natural convection in a square cavity filled with nanofluid. Int J Heat Mass Transf 95:1070–1083

    Article  Google Scholar 

  • Corcione M (2010) Heat transfer features of buoyancy-driven nano fluids inside rectangular enclosures differentially heated at the side walls. Int J Therm Sci 49:15–36

    Google Scholar 

  • Das MK, Oha PS (2009) Natural convection heat transfer augmentation in a partially heated and partially cooled square cavity utilizing nanofluids. Int J Numer Methods Heat Fluid Flow 19:411–431

    Article  Google Scholar 

  • Dastmalchi M, Sheikhzadeh GA, Arani AAA (2015) Double diffusive natural convective in a porous square enclosure filled with nanofluid. Int J Therm Sci 95:88–98

    Article  Google Scholar 

  • Davis GD (1982) Natural convection of air in a square cavity: a bench mark numerical solution. Int J Numer Methods Fluids 3:249–264

    Article  Google Scholar 

  • Esfahani JA, Bordbar V (2011) Double diffusive natural convection heat transfer enhancement in a square enclosure using nanofluids. J Nanotechnol Eng Med 2:1–9

    Article  Google Scholar 

  • Ghasemi B, Aminossadati SM, Raisi A (2011) Magnetic field effect on natural convection in a nanofluid-filled square enclosure. Int J Therm Sci 50:1748–1756

    Article  Google Scholar 

  • Gupta MM (1975) Discretization error estimates for certain splitting procedures for solving first biharmonic boundary value problems. SIAM J Numer Anal 12:364–377

    Article  MathSciNet  Google Scholar 

  • Gupta MM, Kalita JC (2005) A new paradigm for solving NavierStokes equations: streamfunction-velocity formulation. J Comput Phys 207:52–68

    Article  MathSciNet  Google Scholar 

  • Kalita JC, Sen S (2012) The biharmonic approach for unsteady flow past an impulsively started circular cylinder. Commun Comput Phys 12(4):1163–1182

    Article  MathSciNet  Google Scholar 

  • Kefayati G (2015) FDLBM simulation of mixed convection in a lid-driven cavity filled with non-Newtonian nanofluid in the presence of magnetic field. Int J Therm Sci 95:29–46

    Article  Google Scholar 

  • Lyiean L, Bayazitoglu Y, Witt LC (1980) An analytical study of natural convection heat transfer within a trapezoidal enclosure. J Heat Transf 102:640–647

    Article  Google Scholar 

  • Mahapatra TR, Pal D, Mondal S (2013) Mixed convection flow in an inclined enclosure under magnetic field with thermal radiation and heatgeneration. Int Commun Heat Mass Transf 41:47–56

    Article  Google Scholar 

  • Mahmoodi M (2011) Numerical simulation of free convection of nanofluid in a square cavity with an inside heater. Int J Therm Sci 50:2161–2175

    Article  Google Scholar 

  • Mahmoudi AH, Abu-Nada E (2013) Combined effect of magnetic field and nanofluid variable properties on heat transfer enhancement in natural convection. Numer Heat Transf 63:452–472

    Article  Google Scholar 

  • Nasrin R, Parvin S (2012) Investigation of buoyancy-driven flow and heat transfer in a trapezoidal cavity filled with water-Cu nanofluid. Int Commun Heat Mass Transf 39:270–274

    Article  Google Scholar 

  • Nayak RK, Bhattacharyya S, Pop I (2015) Numerical study on mixed convection and entropy generation of Cu-water nanofluid in a differentially heated skewed enclosure. Int J Heat Mass Transf 85:620–634

    Article  Google Scholar 

  • Pal D, Mandal G (2015) MHD convective stagnation-point flow of nanofluids over a non-isothermal stretching sheet with induced magnetic field. Meccanica 50(8):2023–2035

    Article  MathSciNet  Google Scholar 

  • Pal D, Mandal G, Vajravalu K (2014) Convective- radiation effect on stagnation-point flow of nanofluids over a stretching/shrinking surface with viscous dissipation. J Mech 30(3):289–297

    Article  Google Scholar 

  • Pal D, Mandal G, Vajravalu K (2015) Mixed convection stagnation-point flow of nanofluids over a stretching/shrinking sheet in a porous medium with internal heat generation/absorption. Commun Numer Anal 1:30–50

    Article  MathSciNet  Google Scholar 

  • Pandit SK (2008) On the use of compact streamfunction-velocity formulation of steady Navier-Stokes equations on geometries beyoud rectangular. J Sci Comput 36:219–242

    Article  MathSciNet  Google Scholar 

  • Parvin S, Nasrin R, Alim MA, Hossain NF (2013) Double diffusive natural convection in a partially heated cavity using nanofluid: an aanlysis. Glob Sci Tech J 1(1):123–134

    Google Scholar 

  • Peric M (1993) Natural convection in trapezoidal cavity. Int J Numer Heat Transf 24:213–219

    Article  Google Scholar 

  • Sheremet MA, Oztop HF, Pop I, Abu-Hamdeh N (2016) Analysis of entropy generation in natural convection of nanofluid inside a square cavity having hot solid block: Tiwari and Das Model. Entropy 18(9):1–15

    Google Scholar 

  • Sivasankaran S, Kandaswamy P (2006) Double diffusive convection of water in a rectangular partitioned enclosure with temperature dependent species diffusivity. Int J Fluid Mech Res 33(4):345–361

    Article  Google Scholar 

  • Teamah MA, Shehata Ali I (2016) Magnetohydrodynamic double diffusive natural convection in trapezoidal cavities. Alexandria Eng J 55:1037–1046

    Article  Google Scholar 

  • Tofaneli LA, de Lemos MJS (2009) Double-diffusive turbulent natural convection in a porous square cavity with opposing temperature and concentration gradients. Int Commun Heat Mass Transf 36:991–995

    Article  Google Scholar 

  • Uddin MB, Rahman MM, Khan MAH, Saidur R, Ibrahim TA (2016) Hydromagnetic double-diffusive mixed convection in trapezoidal enclosure due to uniform and nonuniform heating at the bottom side: Effect of Lewis number. Alexandria Eng J 55:1165–1176

    Article  Google Scholar 

  • Xuan Y, Roetzel W (2000) Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf 43(19):3701–3707

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors, T. R. Mahapatra, is thankful to the University Grant Commission, New Delhi, India, for providing the financial support through SAP (DRS PHASE III) [Sanction letter no. F. 510/3/DRS-III/2015 (SAP)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. R. Mahapatra.

Additional information

Communicated by Corina Giurgea.

Appendix

Appendix

$$\begin{aligned} P_{1}= & {} \frac{\mu _\mathrm{nf}}{\rho _\mathrm{nf}\alpha _\mathrm{f}},~~P_{2}=\frac{\sigma _\mathrm{nf}\rho _\mathrm{f}}{\sigma _\mathrm{f}\rho _\mathrm{nf}} Ha^{2},~~P_{3} = \frac{(\rho \beta )_\mathrm{nf}}{\rho _\mathrm{nf}\beta _\mathrm{f}} Ra Pr,~~P_{4}=\frac{\alpha _\mathrm{nf}}{\alpha _\mathrm{f}}, \\ B= & {} U G+ 0.5 V E A-H~P_{4},~ P_{6}=U G + 0.5 V E A-\frac{H}{Le},\\ G= & {} \frac{1}{1+2\eta A \cot \phi },~~E=-\frac{2 G \cot \phi (2 \xi -1)}{A},~~F = G^{2}[1+ \cot ^{2}\phi (2 \xi -1)^{2}], \\ H= & {} 4 G^{2} \cot ^{2}\phi (2\xi -1),~~ M=-U G+ V G(2\xi -1)\cot \phi + P_{1} H,\\ T_{1}= & {} -8P_{1} F G^{2}(1-2\xi )\cot ^{2}\phi +P_{1} F H \\&+F M- 4 A G^{3}\cot \phi [1+(1-2\xi )^{2}\cot ^{2}\phi ],\\ T_{2}= & {} -\frac{8}{A}P_{1} F G \cot \phi - 8P_{1} E G^{2}(1-2\xi )\cot ^{2}\phi \\&+P_{1} E H-\frac{8}{A}G^{3} P_{1} \cot \phi [1+(1-2\xi )^{2}\cot ^{2}\phi ]+M E-\frac{V E}{A},\\ T_{3}= & {} -\frac{4}{A}P_{1} E G \cot \phi -\frac{8}{A^{2}}P_{1} G^{2}(1-2\xi )\cot ^{2}\phi +\frac{P_{1} H}{A^{2}}+\frac{M}{A^{2}}-\frac{V E}{A},\\ T_{4}= & {} 24 G^{2}P_{1} \cot ^{2}\phi +32P_{1} E G^{3} A(1-2\xi )\cot ^{3}\phi \\&+\,24 G^{4} P_{1} \cot ^{2} \phi [1+(1-2\xi )^{2}\cot ^{2}\phi ] \\&-\,4 M G^{2} (1-2\xi )\cot ^{2}\phi +M H+4 V G^{3} \cot \phi [1+(1-2\xi )^{2}\cot ^{2}\phi ],\\ T_{5}= & {} \frac{2 P_{1} F}{A^{2}}+P_{1} E^{2}, \\ T_{6}= & {} 16G^{2}P_{1} E \cot ^{2}\phi +\frac{32}{A}P_{1} G^{3}(1-2\xi )\cot ^{3}\phi -\frac{4}{A}M G \cot \phi \\&+\,\frac{4}{A}V G^{2}(1-2\xi )\cot ^{2}\phi -\frac{V H}{A},\\ T_{7}= & {} -32P_{1} E G^{3}A \cot ^{3}\phi -96P_{1} G^{4}(1-2\xi )\cot ^{4}\phi \\&+\,8M G^{2}\cot ^{2}\phi -16V G^{3}(1-2\xi )\cot ^{3}\phi , \\ \frac{\partial \psi }{\partial \xi }= & {} \frac{1}{2h}(\psi _{i+1,j}-\psi _{i-1,j}) + O(h^{2}),\\ \frac{\partial \psi }{\partial \eta }= & {} \frac{1}{2h}(\psi _{i,j+1}-\psi _{i,j-1})+ O(h^{2}), \\ \frac{\partial ^{2} \psi }{\partial \xi ^{2}}= & {} \frac{1}{h^{2}}(\psi _{i+1,j}-2\psi _{i,j}+\psi _{i-1,j})+ O(h^{2}), \end{aligned}$$
$$\begin{aligned} \frac{\partial ^{2} \psi }{\partial \eta ^{2}}= & {} \frac{1}{h^{2}}(\psi _{i,j+1}-2\psi _{i,j}+\psi _{i,j-1})+ O(h^{2}), \\ \frac{\partial ^{2} \psi }{\partial \xi \partial \eta }= & {} \frac{1}{4h^{2}}(\psi _{i-1,j-1}-\psi _{i+1,j-1}+\psi _{i+1,j+1}-\psi _{i-1,j+1})+ O(h^{2}),\\ \frac{\partial ^{3} \psi }{\partial \xi ^{2}\partial \eta }= & {} \frac{1}{2h^{3}}(2\psi _{i,j-1}-2\psi _{i,j+1}-\psi _{i-1,j-1}\\&-\psi _{i+1,j-1}+\psi _{i+1,j+1}+\psi _{i-1,j+1})+ O(h^{2}), \\ \frac{\partial ^{3} \psi }{\partial \xi ^{3}}= & {} \frac{1}{h^{2}}(\psi _{\xi i+1,j}-2\psi _{\xi i,j}+\psi _{\xi i-1,j})+ O(h^{2}),\\ \frac{\partial ^{3} \psi }{\partial \eta ^{3}}= & {} \frac{1}{h^{2}}(\psi _{\eta i,j+1}-2\psi _{\eta i,j}+\psi _{\eta i,j-1})+ O(h^{2}),\\ \frac{\partial ^{3} \psi }{\partial \xi \partial \eta ^{2}}= & {} \frac{1}{2h^{3}}[2\psi _{i-1,j}-2\psi _{i+1,j}-\psi _{i-1,j-1}\\&+\psi _{i+1,j-1}+\psi _{i+1,j+1}-\psi _{i-1,j+1}]+ O(h^{2}), \\ \frac{\partial ^{4} \psi }{\partial \xi ^{4}}= & {} \frac{6}{h^{4}}[h(\psi _{\xi i+1,j}-\psi _{\xi i-1,j})-2(\psi _{i+1,j}-2\psi _{i,j}+\psi _{i-1,j})]+ O(h^{2}),\\ \frac{\partial ^{4} \psi }{\partial \eta ^{4}}= & {} \frac{6}{h^{4}}[h(\psi _{\eta i,j+1}-\psi _{\eta i,j-1})-2(\psi _{i,j+1}-2\psi _{i,j}+\psi _{i,j-1})]+ O(h^{2}), \\ \frac{\partial ^{4} \psi }{\partial \xi ^{3}\partial \eta }= & {} \frac{1}{2 h^{3}}[2\psi _{\xi i,j-1}-2\psi _{\xi i,j+1}-\psi _{\xi i-1,j-1}\\&-\psi _{\xi i+1,j-1}+\psi _{\xi i+1,j+1}+\psi _{\xi i-1,j+1}]+ O(h^{2}), \\ \frac{\partial ^{4} \psi }{\partial \xi \partial \eta ^{3}}= & {} \frac{1}{2 h^{3}}[2\psi _{\eta i-1,j}-2\psi _{\eta i+1,j}-\psi _{\eta i-1,j-1}\\&+\psi _{\eta i+1,j-1}+\psi _{\eta i+1,j+1}-\psi _{\eta i-1,j+1}]+ O(h^{2}), \\ \frac{\partial ^{4} \psi }{\partial \xi ^{2}\partial \eta ^{2}}= & {} \frac{1}{h^{4}}[4\psi _{i,j}-2(\psi _{i-1,j}+\psi _{i+1,j}+\psi _{i,j-1}+\psi _{i,j+1})+\psi _{i-1,j-1}\\&+\psi _{i+1,j-1}+\psi _{i+1,j+1}-\psi _{i-1,j+1}]+ O(h^{2}). \end{aligned}$$

Here, h is the step length on a uniform rectangular mesh in the transformed domain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahapatra, T.R., Saha, B.C. & Pal, D. Magnetohydrodynamic double-diffusive natural convection for nanofluid within a trapezoidal enclosure. Comp. Appl. Math. 37, 6132–6151 (2018). https://doi.org/10.1007/s40314-018-0676-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-018-0676-5

Keywords

Mathematics Subject Classification

Navigation