Skip to main content
Log in

Magnetorheological gels in two and three dimensions: understanding the interplay between single particle motion, internal deformations, and matrix properties

  • Special
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Magnetic hybrid materials are intrinsically heterogeneous in their mechanical properties on different length scales. This gives rise to a number of challenges in the comparison of experimental results to modeling and simulation efforts. This review focused on recent advance on relating the mechanical properties of magnetic hybrid materials to the internal structure of these materials. Special emphasis is given to methods for observing the internal matrix deformations. For 3D and 2D magnetic hybrid materials, we discuss the possibilities and limitations of measuring internal motion and instabilities of the embedded magnetic particles. Although measuring internal matrix deformations in 3D systems is possible, the measurement time for 3D imaging is too long for truly dynamic studies. This limitation can be overcome with 2D imaging in 2D or 3D systems. In all presented systems, measuring the internal deformation also gives the possibility to use the magnetic particles to characterize the mechanical matrix properties locally. The presented experimental advances are put into relation to competing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Klapcinski, T., Galeski, A., Kryszewski, M.: Polyacrylamide gels filled with ferromagnetic anisotropic powder: a model of a magnetomechanical device. J. Appl. Polym. Sci. 58, 1007 (1995)

    Article  Google Scholar 

  2. Zrínyi, M., Barsi, L., Büki, A.: Deformation of ferrogels induced by nonuniform magnetic fields. J. Chem. Phys. 104(21), 8750 (1996)

    Article  Google Scholar 

  3. Jolly, M.R., Carlson, J.D., Muñoz, B.C., Bullions, T.A.: The magnetoviscoelastic response of elastomer composites consisting of ferrous particles embedded in a polymer matrix. J. Intell. Mater. Syst. Struct. 7(6), 613 (1996). https://doi.org/10.1177/1045389X9600700601

    Article  Google Scholar 

  4. Ilg, P.: Stimuli-responsive hydrogels cross-linked by magnetic nanoparticles. Soft Matter 9, 3465 (2013). https://doi.org/10.1039/C3SM27809C

    Article  Google Scholar 

  5. Menzel, A.M.: Bridging from particle to macroscopic scales in uniaxial magnetic gels. J. Chem. Phys. 141(19), (2014). https://doi.org/10.1063/1.4901275. http://scitation.aip.org/content/aip/journal/jcp/141/19/10.1063/1.4901275

  6. Odenbach, S.: Microstructure and rheology of magnetic hybrid materials. Arch. Appl. Mech. 86(1), 269 (2016). https://doi.org/10.1007/s00419-015-1092-6

    Article  Google Scholar 

  7. Hanasoge, S., Hesketh, P.J., Alexeev, A.: Metachronal motion of artificial magnetic cilia. Soft Matter 14(19), 3689 (2018). https://doi.org/10.1039/C8SM00549D

    Article  Google Scholar 

  8. Zrínyi, M.: Magnetic-field-sensitive polymer gels. Trends Polym. Sci. 5(9), 280 (1997)

    Google Scholar 

  9. Filipcsei, G., Csetneki, I., Szilagyi, A., Zrinyi, M.: Magnetic field-responsive smart polymer composites. Adv. Polym. Sci. 206, 137 (2007)

    Article  Google Scholar 

  10. Collin, D., Auernhammer, G.K., Gavat, O., Martinoty, P., Brand, H.R.: Frozen-in magnetic order in uniaxial magnetic gels: preparation and physical properties. Macromol. Rapid Commun. 24, 737 (2003)

    Article  Google Scholar 

  11. Ionov, L.: Hydrogel-based actuators: possibilities and limitations. Mater. Today 17(10), 494 (2014). https://doi.org/10.1016/j.mattod.2014.07.002. http://www.sciencedirect.com/science/article/pii/S1369702114002521

  12. Drotlef, D.M., Blümler, P., del Campo, A.: Magnetically actuated patterns for bioinspired reversible adhesion (dry and wet). Adv. Mater. 26(5), 775 (2014). https://doi.org/10.1002/adma.201303087

    Article  Google Scholar 

  13. Maas, J., Uhlenbusch, D.: Experimental and theoretical analysis of the actuation behavior of magnetoactive elastomers. Smart Mater. Struct. 25(10), 104002 (2016). http://stacks.iop.org/0964-1726/25/i=10/a=104002

  14. Lum, G.Z., Ye, Z., Dong, X., Marvi, H., Erin, O., Hu, W., Sitti, M.: Shape-programmable magnetic soft matter. Proc. Natl. Acad. Sci. 113(41), E6007 (2016). http://www.pnas.org/content/113/41/E6007.abstract

  15. Yoshida, K., Onoe, H.: Functionalized core-shell hydrogel microsprings by anisotropic gelation with bevel-tip capillary. Sci. Rep. 7, 45987EP (2017). https://doi.org/10.1038/srep45987

    Article  Google Scholar 

  16. Moron, C., Cabrera, C., Moron, A., Garcia, A., Gonzalez, M.: Magnetic sensors based on amorphous ferromagnetic materials: a review. Sensors 15, 28340 (2015)

    Article  Google Scholar 

  17. Auernhammer, G.K., Collin, D., Martinoty, P.: Viscoelasticity of suspensions of magnetic particles in a polymer: effect of confinement and external field. J. Chem. Phys. 124, 204907 (2006)

    Article  Google Scholar 

  18. Chen, L., Gong, X.L., Li, W.H.: Microstructures and viscoelastic properties of anisotropic magnetorheological elastomers. Smart Mater. Struct. 16(6), 2645 (2007). http://stacks.iop.org/0964-1726/16/i=6/a=069

  19. Monz, S., Tschöpe, A., Birringer, R.: Magnetic properties of isotropic and anisotropic cofe\_2o\_4-based ferrogels and their application as torsional and rotational actuators. Phys. Rev. E 78(2), 021404 (2008). https://doi.org/10.1103/PhysRevE.78.021404

    Article  Google Scholar 

  20. Borin, D., Günther, D., Hintze, C., Heinrich, G., Odenbach, S.: The level of cross-linking and the structure of anisotropic magnetorheological elastomers. J. Magn. Magn. Mater. 324(21), 3452 (2012). https://doi.org/10.1016/j.jmmm.2012.02.063. http://www.sciencedirect.com/science/article/pii/S0304885312001606

  21. Puljiz, M., Huang, S., Auernhammer, G.K., Menzel, A.M.: Forces on rigid inclusions in elastic media and resulting matrix-mediated interactions. Phys. Rev. Lett. 117(23), 238003 (2016). https://doi.org/10.1103/PhysRevLett.117.238003

    Article  Google Scholar 

  22. Menzel, A.M.: Force-induced elastic matrix-mediated interactions in the presence of a rigid wall. Soft Matter (2017). https://doi.org/10.1039/C7SM00459A

  23. Borbath, T., Günther, S., Borin, D.Y., Gundermann, T., Odenbach, S.: X\(\upmu \)ct analysis of magnetic field-induced phase transitions in magnetorheological elastomers. Smart Mater. Struct. 21(10), 105018 (2012). http://stacks.iop.org/0964-1726/21/i=10/a=105018

  24. Günther, D., Borin, D.Y., Günther, S., Odenbach, S.: X-ray micro-tomographic characterization of field-structured magnetorheological elastomers. Smart Mater. Struct. 21(1), 015005 (2012). http://stacks.iop.org/0964-1726/21/i=1/a=015005

  25. Frickel, N., Messing, R., Schmidt, A.M.: Magneto-mechanical coupling in CoFe2O4-linked paam ferrohydrogels. J. Mater. Chem. 21(23), 8466 (2011). https://doi.org/10.1039/C0JM03816D

    Article  Google Scholar 

  26. Helminger, M., Wu, B., Kollmann, T., Benke, D., Schwahn, D., Pipich, V., Faivre, D., Zahn, D., Cölfen, H.: Synthesis and characterization of gelatin-based magnetic hydrogels. Adv. Funct. Mater. 24(21), 3187 (2014). https://doi.org/10.1002/adfm.201303547

    Article  Google Scholar 

  27. Koetting, M.C., Peters, J.T., Steichen, S.D., Peppas, N.A.: Stimulus-responsive hydrogels: theory, modern advances, and applications. Mater. Sci. Eng. R Rep. 93, 1 (2015). https://doi.org/10.1016/j.mser.2015.04.001. http://www.sciencedirect.com/science/article/pii/S0927796X15000339

  28. Messing, R., Schmidt, A.M.: Perspectives for the mechanical manipulation of hybrid hydrogels. Polym. Chem. 2(1), 18 (2011). https://doi.org/10.1039/C0PY00129E

    Article  Google Scholar 

  29. Tschöpe, A., Birster, K., Trapp, B., Bender, P., Birringer, R.: Nanoscale rheometry of viscoelastic soft matter by oscillating field magneto-optical transmission using ferromagnetic nanorod colloidal probes. J. Appl. Phys. 116(18), (2014). https://doi.org/10.1063/1.4901575. http://scitation.aip.org/content/aip/journal/jap/116/18/10.1063/1.4901575

  30. Velders, A.H., Dijksman, J.A., Saggiomo, V.: Hydrogel actuators as responsive instruments for cheap open technology (haricot). Appl. Mater. Today 9, 271 (2017). https://doi.org/10.1016/j.apmt.2017.08.001. http://www.sciencedirect.com/science/article/pii/S235294071730197X

  31. Zhang, Y.S., Khademhosseini, A.: Advances in engineering hydrogels. Science 356(6337) (2017). http://science.sciencemag.org/content/356/6337/eaaf3627.abstract

  32. Kuo, A.C.M.: Poly(dimethylsiloxane) - PDMS. Oxford University Press Inc, Oxford (1999)

    Google Scholar 

  33. Chen, L., Auernhammer, G.K., Bonaccurso, E.: Short time wetting dynamics on soft surfaces. Soft Matter 7(19), 9084 (2011). https://doi.org/10.1039/C1SM05967J

    Article  Google Scholar 

  34. Tordjeman, P., Fargette, C., Mutin, P.H.: Viscoelastic properties of a cross-linked polysiloxane near the sol-gel transition. J. Rheol. 45(4), 995 (2001). https://doi.org/10.1122/1.1378027

    Article  Google Scholar 

  35. Huang, S., Pessot, G., Cremer, P., Weeber, R., Holm, C., Nowak, J., Odenbach, S., Menzel, A.M., Auernhammer, G.K.: Buckling of paramagnetic chains in soft gels. Soft Matter 12(1), 228 (2016). https://doi.org/10.1039/C5SM01814E

    Article  Google Scholar 

  36. Chambon, F., Winter, H.H.: Linear viscoelasticity at the gel point of a crosslinking PDMS with imbalanced stoichiometry. J. Rheol. 31(8), 683 (1987). https://doi.org/10.1122/1.549955

    Article  Google Scholar 

  37. Winter, H.H., Chambon, F.: Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. J. Rheol. 30(2), 367 (1986). https://doi.org/10.1122/1.549853

    Article  Google Scholar 

  38. Chambon, F., Winter, H.H.: Stopping of crosslinking reaction in a pdms polymer at the gel point. Polym. Bull. 13(6), 499 (1985). https://doi.org/10.1007/BF00263470

    Article  Google Scholar 

  39. Varga, Z., Fehér, J., Filipcsei, G., Zrínyi, M.: Smart nanocomposite polymer gels. Macromol. Symp. 200(1), 93 (2003). https://doi.org/10.1002/masy.200351009

    Article  Google Scholar 

  40. An, Y., Shaw, M.T.: Actuating properties of soft gels with ordered iron particles: basis for a shear actuator. Smart Mater. Struct. 12, 157 (2003)

    Article  Google Scholar 

  41. Aarts, D.G.A.L., Lekkerkerker, H.N.W.: Confocal scanning laser microscopy on fluid–fluid demixing colloid–polymer mixtures. J. Phys. Condens. Matter 16, S4231–S4242 (2004)

    Article  Google Scholar 

  42. Besseling, R., Isa, L., Weeks, E.R., Poon, W.C.K.: Quantitative imaging of colloidal flows. Adv. Colloid Interface Sci. 146(1–2), 1 (2009). https://doi.org/10.1016/j.cis.2008.09.008. http://www.sciencedirect.com/science/article/B6V5F-4TMSNVY-1/2/96530a36e8ba6d0d97c9f6c8595e7272

  43. Derks, D., Wisman, H., Blaaderen, A.v., Imhof, A.: Confocal microscopy of colloidal dispersions in shear flow using a counter-rotating coneäìplate shear cell. J. Phys. Condens. Matter 16(38), 3917 (2004). http://stacks.iop.org/0953-8984/16/i=38/a=010

  44. Dinsmore, A.D., Weeks, E.R., Prasad, V., Levitt, A.C., Weitz, D.A.: Three-dimensional confocal microscopy of colloids. Appl. Opt. 40(24), 4152 (2001)

    Article  Google Scholar 

  45. Dullens, R.P.A., de Villeneuve, V.W.A., Mourad, M.C.D., Petukhov, A.V., Kegel, W.K.: Confocal microscopy of geometrically frustrated hard sphere crystals. Eur. Phys. J. Appl. Phys. 44(1), 21 (2008). https://doi.org/10.1051/epjap:2008145

    Article  Google Scholar 

  46. Jenkins, M.C., Egelhaaf, S.U.: Confocal microscopy of colloidal particles: towards reliable, optimum coordinates. Adv. Colloid Interface Sci. 136(1–2), 65 (2008). http://www.sciencedirect.com/science/article/B6V5F-4PC8RKJ-1/2/64348cafdaa6c15d57662ee8743c84ca

  47. Prasad, V., Semwogerere, D., Weeks, E.R.: Confocal microscopy of colloids. J. Phys. Condens. Matter 19(11) (2007). http://stacks.iop.org/0953-8984/19/113102

  48. Royall, C.P., Louis, A.A., Tanaka, H.: Measuring colloidal interactions with confocal microscopy. J. Chem. Phys. 127(4), 044507 (2007). http://link.aip.org/link/?JCP/127/044507/1

  49. Roth, M., Schilde, C., Lellig, P., Kwade, A., Auernhammer, G.K.: Colloidal aggregates tested via nanoindentation and simultaneous 3d imaging. Eur. Phys. J. E 35, 124 (2012). https://doi.org/10.1140/epje/i2012-12124-8

    Article  Google Scholar 

  50. Zhao, J., Papadopoulos, P., Roth, M., Dobbrow, C., Roeben, E., Schmidt, A., Butt, H.J., Auernhammer, G.K., Vollmer, D.: Colloids in external electric and magnetic fields: colloidal crystals, pinning, chain formation, and electrokinetics. Eur. Phys. J. Spec. Top. 222(11), 2881 (2013). https://doi.org/10.1140/epjst/e2013-02064-1

    Article  Google Scholar 

  51. Wenzl, J., Seto, R., Roth, M., Butt, H.J., Auernhammer, G.: Measurement of rotation of individual spherical particles in cohesive granulates. Granul. Matter 15(4), 391 (2013). https://doi.org/10.1007/s10035-012-0383-7

    Article  Google Scholar 

  52. Minski, M.: Memoir on inventing the confocal scanning microscope. Scanning 10, 128 (1988)

    Article  Google Scholar 

  53. Minsky, M.: Microscopy apparatus. US Patent Office US 3 013 467 (1957)

  54. Crocker, J.C., Grier, D.G.: Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179, 298 (1996)

    Article  Google Scholar 

  55. Weeks, E.R., Crocker, J.C., Levitt, A.C., Schofield, A., Weitz, D.A.: Three-dimensional direct imaging of structural relaxation near the colloidal glass transition. Science 287, 627 (2000)

    Article  Google Scholar 

  56. Schümann, M., Borin, D., Huang, S., Auernhammer, G.K., Müller, R., Odenbach, S.: A characterization of the magnetically induced movement of ndfeb-particles in magnetorheological elastomers. Smart Mater. Struct. 26, 095018 (2017). https://doi.org/10.1088/1361-665X/aa788a

    Article  Google Scholar 

  57. Sanchez, P.A., Gundermann, T., Dobroserdova, A., Kantorovich, S.S., Odenbach, S.: Importance of matrix inelastic deformations in the initial response of magnetic elastomers. Soft Matter 14(11), 2170 (2018). https://doi.org/10.1039/C7SM02366A

    Article  Google Scholar 

  58. Saffman, P.G., Delbrück, M.: Brownian motion in biological membranes. Proc. Natl. Acad. Sci. 72(8), 3111 (1975)

    Article  Google Scholar 

  59. Saffman, P.G.: Brownian motion in thin sheets of viscous fluid. J. Fluid Mech. 73(4), 593 (1976). https://doi.org/10.1017/S0022112076001511. https://www.cambridge.org/core/article/brownian-motion-in-thin-sheets-of-viscous-fluid/52AAD0F1A2CA8E9CB0E745274CDE4D4E

  60. Stone, H.A., Ajdari, A.: Hydrodynamics of particles embedded in a flat surfactant layer overlying a subphase of finite depth. J. Fluid Mech. 369, 151 (1998)

    MATH  Google Scholar 

  61. Danov, K., Aust, R., Durst, F., Lange, U.: Influence of the surface viscosity on the hydrodynamic resistance and surface diffusivity of a large brownian particle. J. Colloid Interface Sci. 175(1), 36 (1995). https://doi.org/10.1006/jcis.1995.1426. http://www.sciencedirect.com/science/article/pii/S0021979785714269

  62. Fischer, T.M., Dhar, P., Heinig, P.: The viscous drag of spheres and filaments moving in membranes or monolayers. J. Fluid Mech. 558, 451 (2006). https://doi.org/10.1017/s002211200600022x

    Article  MATH  Google Scholar 

  63. Stone, H.A., Masoud, H.: Mobility of membrane-trapped particles. J. Fluid Mech. 781, 494 (2015). https://doi.org/10.1017/jfm.2015.486

    Article  MathSciNet  MATH  Google Scholar 

  64. Ngai, T., Auweter, H., Behrens, S.H.: Environmental responsiveness of microgel particles and particle-stabilized emulsions. Macromolecules 39(23), 8171 (2006). https://doi.org/10.1021/ma061366k

    Article  Google Scholar 

  65. Destribats, M., Lapeyre, V., Wolfs, M., Sellier, E., Leal-Calderon, F., Ravaine, V., Schmitt, V.: Soft microgels as pickering emulsion stabilisers: role of particle deformability. Soft Matter 7(17), 7689 (2011). https://doi.org/10.1039/C1SM05240C

    Article  Google Scholar 

  66. Richtering, W.: Responsive emulsions stabilized by stimuli-sensitive microgels: emulsions with special non-pickering properties. Langmuir 28(50), 17218 (2012). https://doi.org/10.1021/la302331s

    Article  Google Scholar 

  67. Monteux, C., Marlière, C., Paris, P., Pantoustier, N., Sanson, N., Perrin, P.: Poly(n-isopropylacrylamide) microgels at the oil-water interface: interfacial properties as a function of temperature. Langmuir 26(17), 13839 (2010). https://doi.org/10.1021/la1019982

    Article  Google Scholar 

  68. Zhang, J., Pelton, R.: Poly(n-isopropylacrylamide) microgels at the air–water interface. Langmuir 15, 8032 (1999)

    Article  Google Scholar 

  69. Deshmukh, O.S., Maestro, A., Duits, M.H., van den Ende, D., Stuart, M.C., Mugele, F.: Equation of state and adsorption dynamics of soft microgel particles at an air–water interface. Soft Matter 10(36), 7045 (2014). https://doi.org/10.1039/c4sm00566j. https://www.ncbi.nlm.nih.gov/pubmed/24954112

  70. Li, Z., Geisel, K., Richtering, W., Ngai, T.: Poly(n-isopropylacrylamide) microgels at the oil–water interface: adsorption kinetics. Soft Matter 9(41), 9939 (2013). https://doi.org/10.1039/C3SM52168K

    Article  Google Scholar 

  71. Richardson, R.M., Pelton, R., Cosgrove, T., Zhang, J.: A neutron reflectivity study of poly(n-isopropylacrylamide) at the air–water interface with and without sodium dodecyl sulfate. Macromolecules 33(17), 6269 (2000). https://doi.org/10.1021/ma000095p

    Article  Google Scholar 

  72. Servant, A., Rogers, S., Zarbakhsh, A., Resmini, M.: Polymeric organic nanogels: structural studies and correlation between morphology and catalytic efficiency. N. J. Chem. 37(12), 4103 (2013). https://doi.org/10.1039/c3nj00462g

    Article  Google Scholar 

  73. Huang, S., Gawlitza, K., von Klitzing, R., Gilson, L., Nowak, J., Odenbach, S., Steffen, W., Auernhammer, G.K.: Microgels at the water/oil interface: in situ observation of structural aging and two-dimensional magnetic bead microrheology. Langmuir 32(3), 712 (2016). https://doi.org/10.1021/acs.langmuir.5b01438

    Article  Google Scholar 

  74. Huang, S., Gawlitza, K., von Klitzing, R., Steffen, W., Auernhammer, G.K.: Structure and rheology of microgel monolayers at the water/oil interface. Macromolecules 50(9), 3680 (2017). https://doi.org/10.1021/acs.macromol.6b02779

    Article  Google Scholar 

  75. Wiese, S., Antje, C.S., Richtering, W.: Microgelstabilized smart emulsions for biocatalysis. Angew. Chem. 125(2), 604 (2012). https://doi.org/10.1002/ange.201206931

    Article  Google Scholar 

  76. Destribats, M., Wolfs, M., Pinaud, F., Lapeyre, V., Sellier, E., Schmitt, V., Ravaine, V.: Pickering emulsions stabilized by soft microgels: influence of the emulsification process on particle interfacial organization and emulsion properties. Langmuir 29(40), 12367 (2013). https://doi.org/10.1021/la402921b

    Article  Google Scholar 

  77. Pinaud, F., Geisel, K., Masse, P., Catargi, B., Isa, L., Richtering, W., Ravaine, V., Schmitt, V.: Adsorption of microgels at an oil-water interface: correlation between packing and 2d elasticity. Soft Matter 10(36), 6963 (2014). https://doi.org/10.1039/C4SM00562G

    Article  Google Scholar 

  78. Deshmukh, O.S., van den Ende, D., Stuart, M.C., Mugele, F., Duits, M.H.G.: Hard and soft colloids at fluid interfaces: adsorption, interactions, assembly & rheology. Adv. Colloid Interface Sci. 222, 215 (2015). https://doi.org/10.1016/j.cis.2014.09.003. http://www.sciencedirect.com/science/article/pii/S0001868614002504

  79. Geisel, K., Henzler, K., Guttmann, P., Richtering, W.: New insight into microgel-stabilized emulsions using transmission x-ray microscopy: nonuniform deformation and arrangement of microgels at liquid interfaces. Langmuir 31(1), 83 (2015). https://doi.org/10.1021/la503959n

    Article  Google Scholar 

  80. Cohin, Y., Fisson, M., Jourde, K., Fuller, G., Sanson, N., Talini, L., Monteux, C.: Tracking the interfacial dynamics of pnipam soft microgels particles adsorbed at the air–water interface and in thin liquid films. Rheol. Acta 52(5), 445 (2013). https://doi.org/10.1007/s00397-013-0697-3

    Article  Google Scholar 

  81. Destribats, M., Eyharts, M., Lapeyre, V., Sellier, E., Varga, I., Ravaine, V., Schmitt, V.: Impact of pnipam microgel size on its ability to stabilize pickering emulsions. Langmuir 30(7), 1768 (2014). https://doi.org/10.1021/la4044396

    Article  Google Scholar 

  82. Dickinson, E.: Microgels—an alternative colloidal ingredient for stabilization of food emulsions. Trends Food Sci. Technol. (2015). https://doi.org/10.1016/j.tifs.2015.02.006. http://www.sciencedirect.com/science/article/pii/S0924224415000485

  83. Plateau, J.: Liv. experimental and theoretical researches into the figures of equilibrium of a liquid mass without weight—eighth series. Lond. Edinb. Dublin Philos. Mag. J. Sci. 38(257), 445 (1869). https://doi.org/10.1080/14786446908640254

    Article  Google Scholar 

  84. Reynaert, S., Brooks, C.F., Moldenaers, P., Vermant, J., Fuller, G.G.: Analysis of the magnetic rod interfacial stress rheometer. J. Rheol. 52(1), 261 (2008). https://doi.org/10.1122/1.2798238

    Article  Google Scholar 

  85. Buttinoni, I., Zell, Z.A., Squires, T.M., Isa, L.: Colloidal binary mixtures at fluid-fluid interfaces under steady shear: structural, dynamical and mechanical response. Soft Matter 11(42), 8313 (2015). https://doi.org/10.1039/C5SM01693B

    Article  Google Scholar 

  86. Rey, M., Fernandez-Rodriguez, M.A., Steinacher, M., Scheidegger, L., Geisel, K., Richtering, W., Squires, T.M., Isa, L.: Isostructural solid–solid phase transition in monolayers of soft core-shell particles at fluid interfaces: structure and mechanics. Soft Matter 12(15), 3545 (2016). https://doi.org/10.1039/C5SM03062E

    Article  Google Scholar 

  87. Wilhelm, C.: Out-of-equilibrium microrheology inside living cells. Phys. Rev. Lett. 101(2), 028101 (2008). https://doi.org/10.1103/PhysRevLett.101.028101

    Article  Google Scholar 

  88. Masschaele, K., Fransaer, J., Vermant, J.: Direct visualization of yielding in model two-dimensional colloidal gels subjected to shear flow. J. Rheol. 53(6), 1437 (2009). https://doi.org/10.1122/1.3237154

    Article  Google Scholar 

  89. Israelachvili, J.N., Pashley, R.M.: Molecular layering of water at surfaces and origin of repulsive hydration forces. Nature 306, 249 (1983). https://doi.org/10.1038/306249a0

    Article  Google Scholar 

  90. Christov, N.C., Danov, K.D., Zeng, Y., Kralchevsky, P.A., von Klitzing, R.: Oscillatory structural forces due to nonionic surfactant micelles: data by colloidal-probe AFM vs theory. Langmuir 26(2), 915 (2010). https://doi.org/10.1021/la902397w

    Article  Google Scholar 

  91. Fuller, G.G., Vermant, J.: Complex fluid-fluid interfaces: rheology and structure. Annu. Rev. Chem. Biomol. Eng. 3(1), 519 (2012). https://doi.org/10.1146/annurev-chembioeng-061010-114202

    Article  Google Scholar 

  92. Samaniuk, J.R., Vermant, J.: Micro and macrorheology at fluid–fluid interfaces. Soft Matter 10(36), 7023 (2014). https://doi.org/10.1039/C4SM00646A

    Article  Google Scholar 

  93. Maestro, A., Bonales, L.J., Ritacco, H., Fischer, T.M., Rubio, R.G., Ortega, F.: Surface rheology: macro- and microrheology of poly(tert-butyl acrylate) monolayers. Soft Matter 7(17), 7761 (2011). https://doi.org/10.1039/C1SM05225J

    Article  Google Scholar 

  94. Ortega, F., Ritacco, H., Rubio, R.G.: Interfacial microrheology: particle tracking and related techniques. Curr. Opin. Colloid Interface Sci. 15(4), 237 (2010). https://doi.org/10.1016/j.cocis.2010.03.001. http://www.sciencedirect.com/science/article/pii/S1359029410000300

  95. Monroy, F., Ortega, F., Rubio, R.G., Velarde, M.G.: Surface rheology, equilibrium and dynamic features at interfaces, with emphasis on efficient tools for probing polymer dynamics at interfaces. Adv. Colloid Interface Sci. 134–135, 175 (2007). https://doi.org/10.1016/j.cis.2007.04.023. http://www.sciencedirect.com/science/article/pii/S0001868607000802

  96. Mendoza, A.J., Guzmán, E., Martínez-Pedrero, F., Ritacco, H., Rubio, R.G., Ortega, F., Starov, V.M., Miller, R.: Particle laden fluid interfaces: dynamics and interfacial rheology. Adv. Colloid Interface Sci. 206, 303 (2014). https://doi.org/10.1016/j.cis.2013.10.010. http://www.sciencedirect.com/science/article/pii/S0001868613001255

  97. Karbaschi, M., Lotfi, M., Krägel, J., Javadi, A., Bastani, D., Miller, R.: Rheology of interfacial layers. Curr. Opin. Colloid Interface Sci. 19(6), 514 (2014). https://doi.org/10.1016/j.cocis.2014.08.003. http://www.sciencedirect.com/science/article/pii/S1359029414000855

  98. Lotfi, M., Karbaschi, M., Javadi, A., Mucic, N., Krägel, J., Kovalchuk, V.I., Rubio, R.G., Fainerman, V.B., Miller, R.: Dynamics of liquid interfaces under various types of external perturbations. Curr. Opin. Colloid Interface Sci. 19(4), 309 (2014). https://doi.org/10.1016/j.cocis.2014.04.006

    Article  Google Scholar 

  99. Miller, R., Liggieri, L.: Interfacial rheology–the response of two-dimensional layers on external perturbations. Curr. Opin. Colloid Interface Sci. 15(4), 215 (2010). https://doi.org/10.1016/j.cocis.2010.05.001. http://www.sciencedirect.com/science/article/pii/S1359029410000439

  100. Sollich, P., Lequeux, F., Hébraud, P., Cates, M.E.: Rheology of soft glassy materials. Phys. Rev. Lett. 78(10), 2020 (1997). https://doi.org/10.1103/PhysRevLett.78.2020

    Article  Google Scholar 

Download references

Acknowledgements

It is my great pleasure to thank H. R. Brand, C. Holm, S. Huang, M. Kästner, R. von Klitzing, A. Menzel, H. Pleiner, S. Odenbach, and A. Tschöpe for many inspiring discussions. The work presented in this article was financially supported by the German Science Foundation (DFG) through the Project AU321/3 within the Priority Program 1681.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter K. Auernhammer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Auernhammer, G.K. Magnetorheological gels in two and three dimensions: understanding the interplay between single particle motion, internal deformations, and matrix properties. Arch Appl Mech 89, 153–165 (2019). https://doi.org/10.1007/s00419-018-1479-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-018-1479-2

Keywords

Navigation