Skip to main content
Log in

Tracking the interfacial dynamics of PNiPAM soft microgels particles adsorbed at the air–water interface and in thin liquid films

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

We report the behavior of thermosensitive soft microgel particles adsorbed at the air–water interface. We study the effect of temperature on the adsorption, interfacial diffusion, and surface rheology of pure N-isopropylacrylamide (NiPAM) microgel particles at the air–water interface. We find that the surface tensions of the solutions are the same as those of polyNiPAM solution; hence, their adsorption properties are dominated by the surface activity of the NiPAM repeat units of the particles. Particle-tracking experiments show that the particles adsorb irreversibly at the interface and form stable clusters at very low concentrations, e.g., 5.10-3 wt%. We suggest that attractions between dangling arms or capillary interaction may be responsible for the formation of these clusters. For concentrations above 10-2 wt%, the interface is filled with particles, and their Brownian diffusivity is arrested. The compression elastic moduli—measured using the pendant drop method—are one or two orders of magnitude below those obtained for hard particles and NiPAM chains, and their value is probably dominated by the intrinsic compressibility of the particles. The thin liquid films made from microgels exhibit a symmetric drainage, consistent with a high surface viscosity, but their lifetime is surprisingly short, illustrating the fragility of the films. We observed the formation of a monolayer of microgels bridging the two interfaces of the film outside the dimple. This zone grows and thins over time to a point where the microgels are highly compressed and stretched, resulting in the rupture of the film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alsayed AM, Islam MF, Zhang J, Collings PJ, Yodh AG (2005) Premelting at defects within bulk colloidal crystals. Science 309:1207–1210

    Article  CAS  Google Scholar 

  • Bergeron V, Radke CJ (1992) Equilibrium measurements of oscillatory disjoining pressures in aqueous foam films. Langmuir 8:3020–3026

    Article  CAS  Google Scholar 

  • Binks BP, Horozov TS (2005) Aqueous foams stabilized solely by silica nanoparticles. Angew Chem Int Ed 44:3722–3725

    Article  CAS  Google Scholar 

  • Brenner H, Leal LG (1978) Micromechanical derivation of Fick’s law for interfacial diffusion of surfactant molecules. J Coll Int Sci 65:191–209

    Article  CAS  Google Scholar 

  • Brugger B, Richtering W (2008) Emulsions stabilized by stimuli-sensitive poly(N-isopropylacrylamide)-co-methacrylic acid polymers: microgels versus low molecular weight polymers. Langmuir 24:7769–7777

    Article  CAS  Google Scholar 

  • Brugger B, Rosen BA, Richtering W (2008) Microgels as stimuli-responsive stabilizers for emulsions. Langmuir 24:12202–12208

    Article  CAS  Google Scholar 

  • Brugger B, Rütten S, Phan KH, Möller M, Richtering W (2009) The colloidal suprastructure of smart microgels at oil–water interfaces. Angew Chem Int Ed 121:4038–4041

    Article  Google Scholar 

  • Brugger B, Vermant J, Richtering W (2010) Interfacial layers of stimuli-responsive poly-(N-isopropylacrylamide-co-methacrylic acid) (PNIPAM-co-MAA) microgels characterized by interfacial rheology and compression isotherms. Phys Chem Chem Phys 12:14573–14578

    Article  CAS  Google Scholar 

  • Butt HJ, Barnes WJP, Del Campo A, Kappl M, Schönfeld F (2010) Capillary forces between soft, elastic spheres. Soft Matter 6:5930–5936

    Article  CAS  Google Scholar 

  • Carvajal D, Laprade EJ, Henderson KJ, Shull KR (2011) Mechanics of pendant drops and axisymmetric membranes. Soft Matter 7:10508–10519

    Article  CAS  Google Scholar 

  • Cervantes-Martinez A, Rio E, Delon G, Saint-Jalmes A, Langevin D, Binks BP (2008) On the origin of the remarkable stability of aqueous foams stabilised by nanoparticles: link with microscopic surface properties. Soft Matter 4:1531–1535

    Article  CAS  Google Scholar 

  • Cicuta P, Stancik EJ, Fuller GG (2003) Shearing or compressing a soft glass in 2D: time-concentration superposition. Phys Rev Lett 90:236101

    Article  Google Scholar 

  • Cloitre M, Borrega R, Leibler L (2000) Rheological aging and rejuvenation in microgel pastes. Phys Rev Lett 85:4819–4822

    Article  CAS  Google Scholar 

  • Danov K, Aust R, Durst F, Lange U (1995) Influence of the surface viscosity on the hydrodynamic resistance and surface diffusivity of a large Brownian particle. J Coll Int Sci 175:36–45

    Article  CAS  Google Scholar 

  • Debord JD, Lyon LA (2000) Thermoresponsive photonic crystals. J Phys Chem B 104:6327–6331

    Article  CAS  Google Scholar 

  • Destribats M, Lapeyre V, Wolfs M, Sellier E, Leal-Calderon F, Ravaine V, Schmitt V (2011a) Soft microgels as Pickering emulsion stabilisers: role of particle deformability. Soft Matter 7:7689–7698

    Article  CAS  Google Scholar 

  • Destribats M, Lapeyre V, Sellier E, Leal-Calderon F, Schmitt V, Ravaine V (2011b) Water-in-oil emulsions stabilized by water-dispersible poly(N-isopropylacrylamide) microgels: understanding anti-Finkle behavior. Langmuir 27:14096–14107

    Article  CAS  Google Scholar 

  • Destribats M, Lapeyre V, Sellier E, Leal-Calderon F, Ravaine V, Schmitt V (2012) Origin and control of adhesion between emulsion drops stabilized by thermally sensitive soft colloidal particles. Langmuir 28:3744–3755

    Article  CAS  Google Scholar 

  • Erni P (2011) Deformation modes of complex fluid interfaces. Soft Matter 7:7586–7600

    Article  CAS  Google Scholar 

  • Fernandez-Nieves A, Wyss H, Mattson J, Weitz DA (2011) Microgels suspensions: fundamentals and applications. Wiley, Weiheim

    Book  Google Scholar 

  • Fischer TM (2004) Comment on “shear viscosity of Langmuir monolayers in the low-density limit”. Phys Rev Lett 139603:92

    Google Scholar 

  • Fischer TM, Dhar P, Heinig P (2006) The viscous drag of spheres and filaments moving in membranes or monolayers. J Fluid Mech 558:451–475

    Article  Google Scholar 

  • Geisel K, Isa L, Richtering W (2012) Unraveling the 3D localization and deformation of responsive microgels at oil/water interfaces: a step forward in understanding soft emulsion stabilizers. Langmuir 28:15770–15776

    Article  CAS  Google Scholar 

  • Guillermic RM, Saint-Jalmes A (2013) Dynamics of poly-nipam chains in competition with surfactants at liquid interfaces: from thermoresponsive interfacial rheology to foams. Soft Matter 9:1344–1353

    Article  CAS  Google Scholar 

  • Hashmi SM, Dufresne ER (2009) Mechanical properties of individual microgel particles through the deswelling transition. Soft Matter 5:3682–3688

    Article  CAS  Google Scholar 

  • Jean B (2000) Thermosensitive polymer at air–water interface: interaction with surfactants and thin film stabilization. Universite Pierre et Marie Curie, Dissertation

    Google Scholar 

  • Joye JL, Miller CA, Hirasaki GJ (1992) Dimple formation and behaviour during axisymmetrical foam film drainage. Langmuir 8:3083–3092

    Article  CAS  Google Scholar 

  • Joye JL, Miller CA, Hirasaki GJ (1994) Asymmetric drainage in foam films. Langmuir 10:3174–3179

    Article  CAS  Google Scholar 

  • Kralchevsky PA, Denkov ND (2001) Capillary forces and structuring in layers of colloid particles. Curr Opin Colloid Interface Sci 6:383–401

    Article  CAS  Google Scholar 

  • Leal-Calderon F, Schmitt V, Bibette J (2007) Emulsion science. Basic principles. Springer, New York

    Google Scholar 

  • Lee LT, Jean B, Menelle A (1999) Effect of temperature on the adsorption of poly(N-isopropylacrylamide) at the air–solution interface. Langmuir 15:3267–3272

    Article  CAS  Google Scholar 

  • Lee MH, Reich DH, Stebe KJ, Leheny RL (2010) Combined passive and active microrheology study of protein-layer formation at an air–water interface. Langmuir 26:2650–2658

    Article  CAS  Google Scholar 

  • Li Z, Ngai T (2010) Stimuli-responsive gel emulsions stabilized by microgel particles. Colloid Polym Sci 289:489–496

    Article  Google Scholar 

  • Liu T, Seiffert S, Thiele J, Abate AR, Weitz DA, Richtering W (2012) Non-coalescence of oppositely charged droplets in pH-sensitive emulsions. Proc Nat Acad Sci 109:384–389

    Article  CAS  Google Scholar 

  • Lucassen J, Vandente M (1972) Dynamic measurements of dilational properties of a liquid interface. Chem Eng Sci 27:1283–1291

    Article  CAS  Google Scholar 

  • Maestro A, Bonales LJ, Ritacco H, Fischer TM, Rubio RG, Ortega F (2011) Surface rheology: macro- and microrheology of poly(tert-butyl acrylate) monolayers. Soft Matter 7:7761–7771

    Article  CAS  Google Scholar 

  • Mattsson J, Wyss HM, Fernandez-Nieves A, Miyazaki K, Hu Z, Reichman DR, Weitz DA (2009) Soft colloids make strong glasses. Nature 462:83–86

    Article  CAS  Google Scholar 

  • Meng Z, Smith MH, Lyon AL (2009) Temperature-programmed synthesis of micron-sized multi-responsive microgels. Coll Polym Sci 287:277–285

    Article  CAS  Google Scholar 

  • Monteux C, Williams CE, Meunier J, Bergeron V (2004) Adsorption of oppositely charged polyelectrolyte/surfactant complexes at the air/water interface: formation of interfacial gels. Langmuir 20:57–63

    Article  CAS  Google Scholar 

  • Monteux C, Marliere C, Paris P, Pantoustier N, Sanson N, Perrin P (2010) Poly(N-isopropylacrylamide) microgels at the oil–water interface: interfacial properties as a function of temperature. Langmuir 26:13839–13846

    Article  CAS  Google Scholar 

  • Ortega F, Ritacco H, Rubio R (2010) Interfacial microrheology: particle tracking and related techniques. Curr Opin Colloid Interface Sci 15:237–245

    Article  CAS  Google Scholar 

  • Pickering SU (1907) Emulsions. J Chem Soc Trans 91:2001–2021

    Article  Google Scholar 

  • Ramsden W (1903) Separation of solids in the surface-layers of solutions and ‘suspensions’ (observations on surface-membranes, bubbles, emulsions, and mechanical coagulation). Preliminary. Account Proc R Soc 72:156–164

    Article  CAS  Google Scholar 

  • Romeo G, Fernandez-Nieves A, Wyss HW, Acierno D, Weitz D (2010) Temperature-controlled transitions between glass, liquid, and gel states in dense p-NIPA suspensions. Adv Mat 22:3441–3445

    Article  CAS  Google Scholar 

  • Sanson N, Rieger J (2010) Synthesis of nanogels/microgels by conventional and controlled radical crosslinking copolymerization. Polym Chem 1:965–977

    Article  CAS  Google Scholar 

  • Saunders BR, Vincent B (1999) Microgel particles as model colloids: theory, properties and applications. Adv Colloid Interface Sci 80:1–25

    Article  CAS  Google Scholar 

  • Senff H, Richtering WB (1999) Temperature sensitive microgel suspensions: colloidal phase behavior and rheology of soft spheres. J Chem Phys 111:1705–1711

    Article  CAS  Google Scholar 

  • Stone HA, Ajdari A (1998) Hydrodynamics of particles embedded in a flat surfactant layer overlying a subphase of finite depth. J Fluid Mech 369:151–173

    CAS  Google Scholar 

  • Subramaniam AB, Mejean C, Abkarian M, Stone HA (2006a) Microstructure, morphology, and lifetime of armored bubbles exposed to surfactants. Langmuir 22:5986–5990

    Article  CAS  Google Scholar 

  • Subramaniam AB, Abkarian M, Mahadevan L, Stone HA (2006b) Mechanics of interfacial composite materials. Langmuir 22:10204–10208

    Article  CAS  Google Scholar 

  • Tcholakova S, Denkov ND, Lips A (2008) Comparison of solid particles, globular proteins and surfactants as emulsifiers. Phys Chem Chem Phys 10:1608–1627

    Article  CAS  Google Scholar 

  • Tsuji S, Kawaguchi H (2008) Thermosensitive Pickering emulsion stabilized by poly(N-isopropylacrylamide)-carrying particles. Langmuir 24:3300–3305

    Article  CAS  Google Scholar 

  • Verwijlen T, Moldenaers P, Stone HA, Vermant J (2011) Study of the flow field in the magnetic rod interfacial stress rheometer. Langmuir 27:9345–9358

    Article  CAS  Google Scholar 

  • Zhang J, Pelton R (1999a) The dynamic behavior of poly(N-isopropylacrylamide) at the air/water interface. Colloids Surf A Physicochem Eng Asp 156:111–122

    Article  CAS  Google Scholar 

  • Zhang J, Pelton R (1999b) Poly(N-isopropylacrylamide) microgels at the air–water interface. Langmuir 15:8032–8036

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank D. Leiske for her help with the ISR measurements as well as Cynthia Wu for bulk rheological measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cécile Monteux.

Additional information

Special issue devoted to novel trends in rheology.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(DOC 26.7 KB)

(DOC 72.7 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohin, Y., Fisson, M., Jourde, K. et al. Tracking the interfacial dynamics of PNiPAM soft microgels particles adsorbed at the air–water interface and in thin liquid films. Rheol Acta 52, 445–454 (2013). https://doi.org/10.1007/s00397-013-0697-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-013-0697-3

Keywords

Navigation