Skip to main content

Magnetic Field-Responsive Smart Polymer Composites

  • Chapter
  • First Online:
Oligomers - Polymer Composites - Molecular Imprinting

Part of the book series: Advances in Polymer Science ((POLYMER,volume 206))

Abstract

The combination of polymers with nano- or microsized solid materials displays novel and often enhancedproperties compared to the traditional materials. They can open up possibilities for new technologicalapplications. Materials whose physical properties can be varied by application of magnetic fields belongto a specific class of smart materials. The broad family of magnetic field-controllable soft materialsincludes ferrofluids, magneto-rheological fluids, magnetic gels, and magnetic elastomers. The magneticgels and elastomers (magnetoelasts) represent a new type of composite and consist of small magneticparticles, usually in the nanometer to micron range, dispersed in a highly elastic polymeric matrix.The magnetic particles can be incorporated into the elastic body either randomly or in ordered structure.If a uniform magnetic field is applied to the reactive mixture during the cross-linking process, particlechains form and become locked into the elastomer. The resulting composites exhibit anisotropic properties.

Combination of magnetic and elastic properties leads to a number of striking phenomena that areexhibited in response to impressed magnetic fields. The magnetic particles couple the shape and the elasticmodulus with the external magnetic field. Giant deformational effects, high elasticity, anisotropic elasticand swelling properties, and quick response to magnetic fields open new opportunities for using such materialsfor various applications. Since the magnetic fields are convenient stimuli from the point of signal control,the magnetoelasts are promising smart materials in engineering due to their real-time controllable elasticproperties.

More recently, increasing interest has been devoted to exploration of multiresponsive magnetic polymers,which exhibit sensitivity to several external stimuli. Micro- and nanospheres that combine both magnetic,temperature, and pH sensitivity were also elaborated and studied. These new results provide novel possibilitiesfor preparation of more complex magnetic field-responsive materials like membranes with on/off switchingcontrol.

In this article, we review recent advances in mechanical and swelling behavior of magnetic field-responsivesoft materials, including flexible polymer networks and gels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gandhi MV, Thompson BS (1992) Smart materials and structures. Chapman & Hall, UK

    Google Scholar 

  2. Okano T (ed) (1998) Biorelated polymers and gels. Academic, New York

    Google Scholar 

  3. Dusek K, Patterson D (1968) J Polym Sci A-2 6:1209

    Article  CAS  Google Scholar 

  4. Dusek K, Prins W (1969) Adv Polym Sci 6:1

    Article  CAS  Google Scholar 

  5. Hoffman AS (1995) Macromol Symp 98:645

    Article  CAS  Google Scholar 

  6. Osada Y, Ross-Murphy SB (1993) Scientific American, May 1993, pp 82–87

    Google Scholar 

  7. Rossi DE, Kawana K, Osada Y, Yamauchi A (eds) (1991) Polymer gels, fundamentals and biomedical applications. Plenum, New York

    Google Scholar 

  8. Verdaguer M (1996) Science 272:698

    Article  CAS  Google Scholar 

  9. Sato O, Iyoda T, Fujishima A, Hashimoto K (1996) Science 272:704

    Article  CAS  Google Scholar 

  10. Miller JS, Eptein AJ (1998) Chem Commun, p 1319

    Google Scholar 

  11. Carlson JD, Jolly MR (2000) Mechatronics 10:555

    Article  Google Scholar 

  12. Ginder JM, Davis LC (1994) Appl Phys Lett 65(26):3410

    Article  CAS  Google Scholar 

  13. Ginder JM, Nichols ME, Elie LD, Tardiff JL (1999) Proc SPIE 3675:131

    Article  CAS  Google Scholar 

  14. Ginder JM, Clark SM, Schlotter WF, Nichols E (2002) Int J Modern Phys B 16:17:18:2412

    Google Scholar 

  15. Shiga T, Okada A, Karauchi T (1993) Macromolecules 26:6958

    Article  CAS  Google Scholar 

  16. Shiga T, Okada A, Karauchi T (1995) J Appl Polym Sci 58:787

    Article  CAS  Google Scholar 

  17. Jolly MR, Carlson JD, Munoz BC, Bullions TA (1996) J Int Mater Syst Struct 7:613

    Article  CAS  Google Scholar 

  18. Bossis G, Coquelle E, Kuzhir P (2004) Ann Chim Sci Mat 29:43

    Article  CAS  Google Scholar 

  19. Bellan C, Bossis G (2002) Int J Modern Phys B 16:2447

    Article  CAS  Google Scholar 

  20. Hu Y, Wang YL, Gong XL, Gong XQ, Zhang XZ, Jiang WQ, Zhang PQ, Chen ZY (2005) Polym Test 24:324

    Article  CAS  Google Scholar 

  21. Kaleta J, Lewandowski D, Zajac P (2005) Mater Sci Forum 482:403

    Article  Google Scholar 

  22. Zhou GY, Jiang ZY (2004) Smart Mater Struct 13:309

    Article  Google Scholar 

  23. Bernadek S (1997) J Magnet Magnet Mater 166:91

    Article  Google Scholar 

  24. Bernadek S (1999) Appl Phys A 68:63

    Article  Google Scholar 

  25. Dorfmann A, Ogden RW (2004) Q JI Mech Appl Math 57(4):599

    Article  Google Scholar 

  26. Farshad M, Benine A (2004) Polym Test 23:343

    Article  Google Scholar 

  27. Barsi L, Büki A, Szabó D, Zrínyi M (1996) Progr Colloid Polym Sci, p 102

    Google Scholar 

  28. Zrínyi M, Barsi L, Büki A (1996) J Chem Phys 104(20):8750

    Article  Google Scholar 

  29. Zrínyi M, Barsi L, Büki A (1997) Polym Gels Networks 5:415

    Article  Google Scholar 

  30. Szabó D, Barsi L, Büki A, Zrínyi M (1997) Models Chem 134(2):155

    Google Scholar 

  31. Zrinyi M (1997) Trends Polym Sci 5:280

    CAS  Google Scholar 

  32. Zrínyi M,Barsi L, Szabó D, Kilian HG (1997) J Chem Phys 108(13):5685

    Article  Google Scholar 

  33. Szabó D, Szeghy G, Zrinyi M (1998) Macromolecules 31:6541

    Article  Google Scholar 

  34. Barsi L, Zrinyi M (1998) ACH-Models Chem 153(3):241

    Google Scholar 

  35. Zrinyi M, Szabo D, Barsi L (1998) J Intell Mater Sys Struct 9:667

    Article  CAS  Google Scholar 

  36. Zrinyi M, Szabo D, Kilian HG (1999) Polym Gel Networks 6:6:441

    Google Scholar 

  37. Mitsumata T, Ikeda K, Gong JP, Osada Y, Szabó D, Zrínyi M (1999) J Appl Phys 85:12:1

    Article  Google Scholar 

  38. Zrínyi M (2000) Colloid Polym Sci 27:2:98

    Google Scholar 

  39. Szabo D, Czako-Nagy I, Zrinyi M, Vertes A (2000) J Colloid Interface Sci 221:166

    Article  CAS  Google Scholar 

  40. Török Gy, Lebedev VT, Cser L, Zrínyi M (2000) Physica B 396:276

    Google Scholar 

  41. Zrínyi M, Szabó D, Barsi L (1999) In: Osada Y, Rossi DE (eds) Magnetic field sensitive polymeric actuators. Polymer sensors and actuators. Springer, Berlin Heidelberg New York, p 385

    Google Scholar 

  42. Zrínyi M, Szabó D, Filipcsei G, Fehér J (2002) In: Osada Y, Khokhlov A, Dekker M (eds) Electric and magnetic field sensitive smart polymer gels. Polymer gels and networks. CHIPS, New York, p 309

    Google Scholar 

  43. Raikher YL, Stolbov OV (2003) J Magnet Magnet Mater 477:258

    Google Scholar 

  44. Farshad M, Roux ML (2005) Polym Test 24:163

    Article  CAS  Google Scholar 

  45. Starodubtsev SG, Saenko EV, Dokukin ME, Aksenov VL, Klechkovskaya VV, Zanaveskina IS, Khokhlov AR (2005) J Phys: Condens Matter 17:1471

    Article  CAS  Google Scholar 

  46. Hernández R, Sarafian A, López D, Mijangos C (2004) Polymer 46:5543

    Article  Google Scholar 

  47. Raikher YL, Stolbov OV (2005) J Magnet Magnet Mater 289:62

    Article  CAS  Google Scholar 

  48. Jarkova E, Vilgis TA (2004) Macromol Theory Simul 13:592

    Article  CAS  Google Scholar 

  49. Mayer CR, Cabuil V, Lalot T, Thouvenot R (2000) Adv Mater 12(6):417

    Article  CAS  Google Scholar 

  50. Teixeira AV, Morfin I, Ehrburger-Dolle F, Rochas C, Geissler E, Licinio P, Panine P (2003) Phys Rev E 67:021504

    Article  Google Scholar 

  51. Bohlius S, Brand HR, Pleiner H (2004) Phys Rev E 70:061411

    Article  CAS  Google Scholar 

  52. Raj K, Moskowitz R (1990) J Magnet Magnet Mater 85:233

    Article  CAS  Google Scholar 

  53. Rosenweig RE (1985) Ferrohydrodynamics. Cambridge University Press, Cambridge

    Google Scholar 

  54. Si S, Li C, Wang X, Yu D, Peng Q, Li Y (2005) Crystal Growth Des 5(2):391

    Article  CAS  Google Scholar 

  55. Berkovsky BM, Bashtovoy V (eds) (1996) Magnetic fluids and applications handbook. Begell House, New York

    Google Scholar 

  56. Otaigbe JU, Barnes MD, Fukui K, Sumter BG, Noid DW (2001) Adv Polym Sci 154:1

    Article  CAS  Google Scholar 

  57. Nakano M, Koyama K (eds) (1997) Electro-rheological fluids, magneto-rheological suspensions and their applications. World Scientific, Hackensack, NJ

    Google Scholar 

  58. Panhurst QA, Connolly J, Jones SK, Dobson J (2003) J Phys D Appl Phys 36:167

    Article  Google Scholar 

  59. Wormuth K (2001) J Coll Inter Sci 241:366

    Article  CAS  Google Scholar 

  60. Ramírez LP, Landfester K (2003) Macromol Chem Phys 204:22

    Article  Google Scholar 

  61. Nishio Y, Yamada A, Ezaki K, Miyashita Y, Furukawa H, Horie K (2004) Polymer 45:7129

    Article  CAS  Google Scholar 

  62. Chatterjee J, Haik Y, Chen CJ (2001) Colloid Polym Sci 279:1073

    Article  CAS  Google Scholar 

  63. Ma Z, Guan Y, Liu H (2005) J Polym Sci A: Polym Chem 43:3433

    Article  CAS  Google Scholar 

  64. Iacob GH, Rotariu O, Strachan NJC, Hafeli UO (2004) Biorheology 41:599

    CAS  Google Scholar 

  65. Zhou SQ, Chu B (1998) J Phys Chem B 102:1364

    Article  CAS  Google Scholar 

  66. Jones CD, Lyon LA (2000) Macromolecules 33:8301

    Article  CAS  Google Scholar 

  67. Chatterjee J, Haik Y, Chen CJ (2003) J Appl Polym Sci 91:3337

    Article  Google Scholar 

  68. Deng Y, Yang W, Wang C, Fu S (2003) Adv Mater 15:1729

    Article  CAS  Google Scholar 

  69. Sauzedde F, Elaissari A, Pichot C (1999) Colloid Polym Sci 277:846

    Article  CAS  Google Scholar 

  70. Xulu M, Filipcsei G, Zrínyi M (2000) Macromolecules 33(5):1716

    Article  CAS  Google Scholar 

  71. Gilányi T, Varga I, Mészáros R, Filipcsei G, Zrínyi M (2001) Langmuir 17(16):4764

    Article  Google Scholar 

  72. Gilányi T, Varga I, Mészáros R, Filipcsei G, Zrínyi M (2001) J Phys Chem B 105(38):971

    Google Scholar 

  73. Kondo A, Fukuda H (1999) Colloids Surf A: Physicochem Eng Aspects 153:435

    Article  CAS  Google Scholar 

  74. Mark JE (1985) British Polym J 17:144

    Article  CAS  Google Scholar 

  75. Haas W, Zrínyi M, Kilian HG, Heise B (1993) Colloid Polym Sci 271:1024

    Article  CAS  Google Scholar 

  76. Filipcsei G, Szilágyi A, Csetneki I, Zrínyi M (2006) Polym Adv Technol 239:130

    CAS  Google Scholar 

  77. Varga Z, Filipcsei G, Szilágyi A, Zrínyi M (2005) Macromol Symp 227:123

    Article  CAS  Google Scholar 

  78. Varga Z, Filipcsei G, Zrínyi M (2006) Polymer 47(1):227

    Article  CAS  Google Scholar 

  79. Landfester K, Willert M, Antonietti M (2000) Macromolecules 33:2370

    Article  CAS  Google Scholar 

  80. Csetneki I, Kabai Faix M, Szilágyi A, Kovács AL, Németh Z, Zrínyi M (2004) J Polym Sci A: Polym Chem 42:482

    Article  Google Scholar 

  81. Park TG, Choi HK (1998) Macromol Rapid Commun 19:167

    Article  CAS  Google Scholar 

  82. Csetneki I, Filipcsei G, Zrínyi M (2005) Macromolecules 39:1942

    Google Scholar 

  83. Neél L (1949) Geophys A 5:99

    Google Scholar 

  84. Mark JE, Erman B (1988) Rubberlike elasticity, a molecular primer. Wiley, NY

    Google Scholar 

  85. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, NY

    Google Scholar 

  86. Treloar LRG (1949) The physics of rubber elasticity. Oxford, Clarendon Press

    Google Scholar 

  87. Rothon R (1995) Particulate-filled polymer composites. Longman Sci Techn, Harlow, UK

    Google Scholar 

  88. Odgen RW (1984) Non-linear elastic deformations. Ellis Horwood, Chichester

    Google Scholar 

  89. Tanaka T, Fillmore D (1979) J Chem Phys 70:1214

    Article  CAS  Google Scholar 

  90. Tanaka T, Nishio I, Sun ST, Uenonishio S (1982) Science 218:467

    Article  CAS  Google Scholar 

  91. Hirotsu S (1993) Adv Polym Sci 110:1

    Article  CAS  Google Scholar 

  92. Tanaka T, Fillmore D (1979) J Chem Phys 70:1214

    Article  CAS  Google Scholar 

  93. Peters A, Candau SJ (1986) Macromolecules 19:1952

    Article  CAS  Google Scholar 

  94. Peters A, Candau SJ (1988) Macromolecules 21:2278

    Article  CAS  Google Scholar 

  95. Onuki A (1988) Phys Rev A 38:2192

    Article  CAS  Google Scholar 

  96. Li Y, Tanaka T (1990) J Chem Phys 92:1365

    Article  CAS  Google Scholar 

  97. Varga Z, Filipcsei G, Zrínyi M (2005) Polymer 46:7779

    Article  CAS  Google Scholar 

  98. Nikitin L, Stepanov G, Mironova L, Samus A (2003) J Mag Mag Mater 258–259:468

    Article  Google Scholar 

  99. Nikitin L, Mironova L, Kornev K, Stepanov G (2004) Polym Sci A 46(3):301

    Google Scholar 

  100. Nikitin L, Stepanov G, Mironova L, Gorbunov A (2004) J Mag Mag Mater 272–276:2072

    Article  Google Scholar 

  101. Abramchuk S, Grishin D, Kramarenko E, Stepanov G, Khokhlov A (2006) Polym Sci A (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bing Gong or Miklós Zrínyi .

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Filipcsei, G., Csetneki, I., Szilágyi, A., Zrínyi, M. (2007). Magnetic Field-Responsive Smart Polymer Composites. In: Oligomers - Polymer Composites - Molecular Imprinting. Advances in Polymer Science, vol 206. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2006_104

Download citation

Publish with us

Policies and ethics