Skip to main content
Log in

Holocentromere identity: from the typical mitotic linear structure to the great plasticity of meiotic holocentromeres

  • Mini-Review
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

The centromere is the chromosomal site of kinetochore assembly and is responsible for the correct chromosome segregation during mitosis and meiosis in eukaryotes. Contrary to monocentrics, holocentric chromosomes lack a primary constriction, what is attributed to a kinetochore activity along almost the entire chromosome length during mitosis. This extended centromere structure imposes a problem during meiosis, since sister holocentromeres are not co-oriented during first meiotic division. Thus, regardless of the relatively conserved somatic chromosome structure of holocentrics, during meiosis holocentric chromosomes show different adaptations to deal with this condition. Recent findings in holocentrics have brought back the discussion of the great centromere plasticity of eukaryotes, from the typical CENH3-based holocentromeres to CENH3-less holocentric organisms. Here, we summarize recent and former findings about centromere/kinetochore adaptations shown by holocentric organisms during mitosis and meiosis and discuss how these adaptations are related to the type of meiosis found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akiyoshi B, Gull K (2014) Discovery of unconventional kinetochores in kinetoplastids. Cell 156:1247–1258. doi:10.1016/j.cell.2014.01.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albertson DG, Thomson JN (1982) The kinetochores of Caenorhabditis elegans. Chromosoma 86:409–428

    Article  CAS  PubMed  Google Scholar 

  • Albertson DG, Thomson JN (1993) Segregation of holocentric chromosomes at meiosis in the nematode, Caenorhabditis elegans. Chromosom Res 1:15–26

    Article  CAS  Google Scholar 

  • Albertson DG, Rose AM, Villeneuve AM (1997) Chromosome organization, mitosis, and meiosis. In: Riddle DL, Blumenthal T, Meyer BJ, Priess JR (eds) C. elegans II, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 47–48

    Google Scholar 

  • Benavente R (1982) Holocentric chromosomes of arachnids: presence of kinetochore plates during meiotic divisions. Genetica 59:23–27. doi:10.1007/Bf00130811

    Article  Google Scholar 

  • Bokhari FS, Godward MBE (1980) The ultrastructure of the diffuse kinetochore in Luzula nivea. Chromosoma 79:125–136

    Article  Google Scholar 

  • Bongiorni S, Fiorenzo P, Pippoletti D, Prantera G (2004) Inverted meiosis and meiotic drive in mealybugs. Chromosoma 112:331–341. doi:10.1007/s00412-004-0278-4

    Article  PubMed  Google Scholar 

  • Braselton JP (1971a) Ultra-structure of Luzula kinetochores during mitosis. Am J Bot 58:451

    Google Scholar 

  • Braselton JP (1971b) Ultrastructure of non-localized kinetochores of Luzula and Cyperus. Chromosoma 36:89–99. doi:10.1007/Bf00326424

    Article  Google Scholar 

  • Braselton JP (1981) The ultrastructure of meiotic kinetochores of Luzula. Chromosoma 82:143–151. doi:10.1007/Bf00285757

    Article  Google Scholar 

  • Brieger FG, Graner EA (1943) On the cytology of Tityus bahiensis with special reference to meiotic prophase. Genetics 28:269–274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown SW, Cleveland C (1968) Meiosis in the male of Puto albicans (Coccoidea-Homoptera). Chromosoma 24:210–232

    Article  CAS  PubMed  Google Scholar 

  • Buchwitz BJ, Ahmad K, Moore LL, Roth MB, Henikoff S (1999) A histone-H3-like protein in C. elegans. Nature 401:547–548. doi:10.1038/44062

    Article  CAS  PubMed  Google Scholar 

  • Buck RC (1967) Mitosis and meiosis in Rhodnius prolixus: the fine structure of the spindle and diffuse kinetochore. J Ultrastruct Res 18:489–501

  • Bures P, Zedek F, Markova M (2013) Holocentric chromosomes. In: Greilhuber J, Dolezel J, Wendel JF (eds) Plant Genome Diversity, vol Volume 2. Springer-Verlag Wien, Vienna. doi:10.1007/978-3-7091-1160-4

    Google Scholar 

  • Cabral G, Marques A, Schubert V, Pedrosa-Harand A, Schlogelhofer P (2014) Chiasmatic and achiasmatic inverted meiosis of plants with holocentric chromosomes. Nat Commun 5:5070. doi:10.1038/ncomms6070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camacho JPM, Belda J, Cabrer J (1985) Meiotic behaviour of the holocentric chromosomes of Nezara viridula (Insecta, Heteroptera) analysed by C-banding and silver impregnation. Can J Genet Cytol 27:490–497

    Article  Google Scholar 

  • Cheerambathur DK, Desai A (2014) Linked in: formation and regulation of microtubule attachments during chromosome segregation. Curr Opin Cell Biol 26:113–122. doi:10.1016/j.ceb.2013.12.005

    Article  CAS  PubMed  Google Scholar 

  • Comings DE, Okada TA (1972) Holocentric chromosomes in Oncopeltus: kinetochore plates are present in mitosis but absent in meiosis. Chromosoma 37:177–192

    Article  CAS  PubMed  Google Scholar 

  • Consortium TCeS (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:2012–2018. doi:10.1126/science.282.5396.2012

    Article  Google Scholar 

  • Cuacos M, Franklin FCH, Heckmann S (2015) Atypical centromeres in plants—what they can tell us. Front Plant Sci 6:913. doi:10.3389/fpls.2015.00913

  • d’Alencon E et al. (2010) Extensive synteny conservation of holocentric chromosomes in Lepidoptera despite high rates of local genome rearrangements. Proc Natl Acad Sci USA 107:7680–7685. doi:10.1073/pnas.0910413107

  • Dernburg AF (2001) Here, there, and everywhere: kinetochore function on holocentric chromosomes. J Cell Biol 153:33–38

    Article  Google Scholar 

  • Drinnenberg IA, deYoung D, Henikoff S, Malik HS (2014) Recurrent loss of CenH3 is associated with independent transitions to holocentricity in insects. eLife 3:e03676. doi:10.7554/eLife.03676

    Article  PubMed Central  CAS  Google Scholar 

  • Dumont J, Oegema K, Desai A (2010) A kinetochore-independent mechanism drives anaphase chromosome separation during acentrosomal meiosis. Nat Cell Biol 12:894–901. doi:10.1038/ncb2093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Earnshaw WC (2015) Discovering centromere proteins: from cold white hands to the A, B, C of CENPs. Nat Rev Mol Cell Biol 16:443–449. doi:10.1038/nrm4001

  • Earnshaw WC et al. (2013) Esperanto for histones: CENP-A, not CenH3, is the centromeric histone H3 variant. Chromosom Res 21:101–106. doi:10.1007/s10577-013-9347-y

    Article  CAS  Google Scholar 

  • Eichenlaub-Ritter U, Ruthmann A (1982a) Evidence for three "classes" of microtubules in the interpolar space of the mitotic micronucleus of a ciliate and the participation of the nuclear envelope in conferring stability to microtubules. Chromosoma 85:687–706

    Article  CAS  PubMed  Google Scholar 

  • Eichenlaub-Ritter U, Ruthmann A (1982b) Holokinetic composite chromosomes with "diffuse" kinetochores in the micronuclear mitosis of a heterotrichous ciliate. Chromosoma 84:701–716. doi:10.1007/BF00286335

    Article  Google Scholar 

  • Emmons SW, Klass MR, Hirsh D (1979) Analysis of the constancy of DNA sequences during development and evolution of the nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A 76:1333–1337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esteban MR, Giovinazzo G, de la Hera A, Goday C (1998) PUMA1: a novel protein that associates with the centrosomes, spindle and centromeres in the nematode Parascaris. J Cell Sci 111:723–735

    CAS  PubMed  Google Scholar 

  • Feiertag-Koppen CCM (1976) Cytological studies of the two-spotted spider mite Tetranychus urticae Koch (Tetranychidae, Trombidiniformes) I. Meiosis in eggs. Genetica 46:445–456

  • Flach M (1966) Diffuse centromeres in a dicotyledonous plant. Nature 209:1369. doi:10.1038/2091369b0

    Article  Google Scholar 

  • Friedlander M, Wahrman J (1970) The spindle as a basal body distributor. A study in the meiosis of the male silkworm moth, Bombyx mori. J Cell Sci 7:65–89

    CAS  PubMed  Google Scholar 

  • García MA, Castroviejo S (2003) Estudios citotaxonómicos en las especies ibéricas del género Cuscuta (Convolvulaceae). Anales Jardín Botánico de Madrid 60:33–44

    Google Scholar 

  • Gassmann R et al. (2012) An inverse relationship to germline transcription defines centromeric chromatin in C. elegans. Nature 484:534–537. doi:10.1038/nature10973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gassner G, Klemetso DJ (1974) A transmission electron microscope examination of hemipteran and lepidopteran gonial centromeres. Can J Genet Cytol 16:457–464

    Article  Google Scholar 

  • Goday C, Pimpinelli S (1989) Centromere organization in meiotic chromosomes of Parascaris univalens. Chromosoma 98:160–166

    Article  CAS  PubMed  Google Scholar 

  • Goday C, Pimpinelli S (1993) The occurrence, role and evolution of chromatin diminution in nematodes. Parasitol Today 9:319–322

    Article  CAS  PubMed  Google Scholar 

  • Goday C, Ciofi-Luzzatto A, Pimpinelli S (1985) Centromere ultrastructure in germ-line chromosomes of Parascaris. Chromosoma 91:121–125

    Article  CAS  PubMed  Google Scholar 

  • Godward MBE (1954) The ‘diffuse’ centromere or polycentric chromosomes in Spirogyra. Ann Bot 18:143–156

    Google Scholar 

  • Goldstein P (1977) Spermatogenesis and spermiogenesis in Ascaris lumbricoides Var. suum. J Morphol 154:317–337. doi:10.1002/jmor.1051540302

    Article  CAS  PubMed  Google Scholar 

  • Goldstein P (1978) Ultrastructural analysis of sex determination in Ascaris lumbricoides Var. suum. Chromosoma 66:59–69. doi:10.1007/BF00285816

    Article  Google Scholar 

  • González-García JM, Antonio C, Suja JA, Rufas JS (1996) Meiosis in holocentric chromosomes: kinetic activity is randomly restricted to the chromatid ends of sex univalents in Graphosoma italicum (Heteroptera). Chromosom Res 4:124–132

    Article  Google Scholar 

  • Guerra M, Garcia MA (2004) Heterochromatin and rDNA sites distribution in the holocentric chromosomes of Cuscuta approximata Bab. (Convolvulaceae). Genome 47:134–140. doi:10.1139/g03-098

    Article  CAS  PubMed  Google Scholar 

  • Guerra M, Brasileiro-Vidal AC, Arana P, Puertas MJ (2006) Mitotic microtubule development and histone H3 phosphorylation in the holocentric chromosomes of Rhynchospora tenuis (Cyperaceae). Genetica 126:33–41. doi:10.1007/s10709-005-1430-7

    Article  CAS  PubMed  Google Scholar 

  • Guerra M, Cabral G, Cuacos M, Gonzalez-Garcia M, Gonzalez-Sanchez M, Vega J, Puertas MJ (2010) Neocentrics and holokinetics (holocentrics): chromosomes out of the centromeric rules. Cytogenet Genome Res 129:82–96. doi:10.1159/000314289

  • Hakansson A (1958) Holocentric chromosomes in Eleocharis. Hereditas 44:531–540

    Article  Google Scholar 

  • Heckmann S, Houben A (2013) Holokinetic centromeres. In: Jiang J, Birchler JA (eds) Plant centromere biology. Wiley, Oxford, pp. 83–94. doi:10.1002/9781118525715.ch7

    Chapter  Google Scholar 

  • Heckmann S et al. (2011) Holocentric chromosomes of Luzula elegans are characterized by a longitudinal centromere groove, chromosome bending, and a terminal nucleolus organizer region. Cytogenet Genome Res 134:220–228. doi:10.1159/000327713

  • Heckmann S et al. (2013) The holocentric species Luzula elegans shows interplay between centromere and large-scale genome organization. Plant J 73:555–565. doi:10.1111/tpj.12054

    Article  CAS  PubMed  Google Scholar 

  • Heckmann S, Jankowska M, Schubert V, Kumke K, Ma W, Houben A (2014) Alternative meiotic chromatid segregation in the holocentric plant Luzula elegans. Nat Commun 5:4979. doi:10.1038/ncomms5979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hipp AL, Escudero M, Chung K-S (2013) Holocentric chromosomes vol 3, 2 edn. Elsevier. doi:10.1016/B978-0-12-374984-0.00723-3

  • Holm PB, Rasmussen SW (1980) Chromosome pairing, recombination nodules and chiasma formation in diploid Bombyx males. Carlsb Res Commun 45:483–548

    Article  Google Scholar 

  • Howe M, McDonald KL, Albertson DG, Meyer BJ (2001) HIM-10 is required for kinetochore structure and function on Caenorhabditis elegans holocentric chromosomes. J Cell Biol 153:1227–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes-Schrader S, Schrader F (1961) The kinetochore of the Hemiptera. Chromosoma 12:327–350

    Article  CAS  PubMed  Google Scholar 

  • International Silkworm Genome Consortium (2008) The genome of a lepidopteran model insect, the silkworm Bombyx mori. Insect Biochem Mol Biol 38:1036–1045. doi:10.1016/j.ibmb.2008.11.004

  • John B (1990) Meiosis. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kakui Y, Sato M (2016) Differentiating the roles of microtubule-associated proteins at meiotic kinetochores during chromosome segregation. Chromosoma 125:309–320. doi:10.1007/s00412-015-0541-x

    Article  CAS  PubMed  Google Scholar 

  • Lanzone C, De Souza MJ (2006) C-banding, fluorescent staining and NOR location in holokinetic chromosomes of bugs of the Neotropical genus Antiteuchus (Heteroptera : Pentatomidae : Discocephalinae). Eur J Entomol 103:239–243

    Article  Google Scholar 

  • Ma W et al. (2016) The distribution of alpha-kleisin during meiosis in the holocentromeric plant Luzula elegans. Chromosom Res. doi:10.1007/s10577-016-9529-5

    Google Scholar 

  • Maddox PS, Oegema K, Desai A, Cheeseman IM (2004) "Holo"er than thou: chromosome segregation and kinetochore function in C. elegans. Chromosom Res 12:641–653. doi:10.1023/B:CHRO.0000036588.42225.2f

    Article  CAS  Google Scholar 

  • Malheiros N, Castro D, Câmara A (1947) Cromosomas sem centrómero localizado: O caso de Luzula purpurea Link. Agron Lusit 9:51–74

    Google Scholar 

  • Mandrioli M, Manicardi GC (2012) Unlocking holocentric chromosomes: new perspectives from comparative and functional genomics? Curr Genomics 13:343–349. doi:10.2174/138920212801619250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marec F, Novak K (1998) Absence of sex chromatin corresponds with a sex-chromosome univalent in females of Trichoptera. Eur J Entomol 95:197–209

    Google Scholar 

  • Marec F, Traut W (1993) Synaptonemal complexes in female and male meiotic prophase of Ephestia kuehniella (Lepidoptera). Heredity 71:394–404

    Article  Google Scholar 

  • Marques A et al. (2015) Holocentromeres in Rhynchospora are associated with genome-wide centromere-specific repeat arrays interspersed among euchromatin. Proc Natl Acad Sci U S A 112:13633–13638. doi:10.1073/pnas.1512255112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marques A, Schubert V, Houben A, Pedrosa-Harand A (2016) Restructuring of holocentric centromeres during meiosis in the plant Rhynchospora pubera. Genetics. doi:10.1534/genetics.116.191213

  • Martinez-Perez E, Schvarzstein M, Barroso C, Lightfoot J, Dernburg AF, Villeneuve AM (2008) Crossovers trigger a remodeling of meiotic chromosome axis composition that is linked to two-step loss of sister chromatid cohesion. Genes Dev 22:2886–2901. doi:10.1101/gad.1694108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melters DP, Paliulis LV, Korf IF, Chan SW (2012) Holocentric chromosomes: convergent evolution, meiotic adaptations, and genomic analysis. Chromosom Res 20:579–593. doi:10.1007/s10577-012-9292-1

    Article  CAS  Google Scholar 

  • Mola LM (1995) Post-reductional meiosis in Aeshna (Aeshnidae, Odonata). Hereditas 122:47–55

    Article  Google Scholar 

  • Monen J, Maddox PS, Hyndman F, Oegema K, Desai A (2005) Differential role of CENP-A in the segregation of holocentric C. elegans chromosomes during meiosis and mitosis. Nat Cell Biol 7:1248–1255. doi:10.1038/ncb1331

    Article  PubMed  CAS  Google Scholar 

  • Mughal S, Godward MBE (1973) Kinetochore and microtubules in two members of Chlorophyceae, Cladophora fracta and Spirogyra majuscula. Chromosoma 44:213–229. doi:10.1007/BF00329118

    Article  Google Scholar 

  • Müller F, Tobler H (2000) Chromatin diminution in the parasitic nematodes Ascaris suum and Parascaris univalens. Int J Parasitol 30:391–399

    Article  PubMed  Google Scholar 

  • Müller F, Bernard V, Tobler H (1996) Chromatin diminution in nematodes. BioEssays : news and reviews in molecular, cellular and developmental biology 18:133–138. doi:10.1002/bies.950180209

    Article  Google Scholar 

  • Murakami A, Imai HT (1974) Cytological evidence for holocentric chromosomes of the silkworms, Bombyx mori and B. mandarina, (Bombycidae, Lepidoptera). Chromosoma 47:167–178

    Article  CAS  PubMed  Google Scholar 

  • Nagaki K, Kashihara K, Murata M (2005) Visualization of diffuse centromeres with centromere-specific histone H3 in the holocentric plant Luzula nivea. Plant Cell 17:1886–1893. doi:10.1105/tpc.105.032961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neumann P et al. (2012) Stretching the rules: monocentric chromosomes with multiple centromere domains. PLoS Genet 8:e1002777. doi:10.1371/journal.pgen.1002777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neumann P, Pavlikova Z, Koblizkova A, Fukova I, Jedlickova V, Novak P, Macas J (2015) Centromeres off the hook: massive changes in centromere size and structure following duplication of CenH3 gene in Fabeae species. Mol Biol Evol. doi:10.1093/molbev/msv070

    PubMed  PubMed Central  Google Scholar 

  • Nokkala S (1987) Cytological characteristics of chromosome behavior during female meiosis in Sphinx ligustri L (Sphingidae, Lepidoptera). Hereditas 106:169–179. doi:10.1111/j.1601-5223.1987.tb00250.x

    Article  Google Scholar 

  • Nokkala S, Nokkala C (1997) The absence of chiasma terminalization and inverted meiosis in males and females of Myrmus miriformis Fn (Corizidae, Heteroptera). Heredity 78:561–566. doi:10.1038/Hdy.1997.87

  • Nokkala S, Laukkanen A, Nokkala C (2002) Mitotic and meiotic chromosomes in Somatochlora metallica (Cordulidae, Odonata). The absence of localized centromeres and inverted meiosis. Hereditas 136:7–12

    Article  PubMed  Google Scholar 

  • Oegema K, Hyman AA (2006) Cell division WormBook : the online review of C elegans biology 1–40 doi:10.1895/wormbook.1.72.1

  • Papeschi AG, Mola LM, Bressa MJ, Greizerstein EJ, Lia V, Poggio L (2003) Behaviour of ring bivalents in holokinetic systems: alternative sites of spindle attachment in Pachylis argentinus and Nezara viridula (Heteroptera). Chromosom Res 11:725–733

    Article  CAS  Google Scholar 

  • Pazy B, Plitman U (1991) Unusual chromosome separation in meiosis of Cuscuta L. Genome 34:533–536

    Article  Google Scholar 

  • Pazy B, Plitmann U (1987) Persisting demibivalents: a unique meiotic behavior in Cuscuta babylonica Choisy. Genome 29:63–66

    Article  Google Scholar 

  • Pazy B, Plitmann U (1994) Holocentric chromosome behaviour in Cuscuta (Cuscutaceae). Plant Syst Evol 191:105–109

    Article  Google Scholar 

  • Perez R, Panzera F, Page J, Suja JA, Rufas JS (1997) Meiotic behaviour of holocentric chromosomes: orientation and segregation of autosomes in Triatoma infestans (Heteroptera). Chromosom Res 5:47–56

    Article  CAS  Google Scholar 

  • Perez R, Rufas JS, Suja JA, Page J, Panzera F (2000) Meiosis in holocentric chromosomes: orientation and segregation of an autosome and sex chromosomes in Triatoma infestans (Heteroptera). Chromosom Res 8:17–25

    Article  CAS  Google Scholar 

  • Pimpinelli S, Goday C (1989) Unusual kinetochores and chromatin diminution in Parascaris. Trends Genet 5:310–315

    Article  CAS  PubMed  Google Scholar 

  • Plohl M, Mestrovic N, Mravinac B (2014) Centromere identity from the DNA point of view. Chromosoma 123:313–325. doi:10.1007/s00412-014-0462-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmussen SW (1977a) Meiosis in Bombyx mori females. Philos Trans R Soc Lond Ser B Biol Sci 277:343–350

    Article  CAS  Google Scholar 

  • Rasmussen SW (1977b) The transformation of the synaptonemal complex into the ‘elimination chromatin’ in Bombyx Mori oocytes. Chromosoma 60:205–221

  • Rufas JS, Gimenez-Martin G (1986) Ultrastructure of the kinetochore in Graphosoma italicum (Hemiptera, Heteroptera). Protoplasma 132:142–148. doi:10.1007/Bf01276994

    Article  Google Scholar 

  • Ruthmann A, Permantier Y (1973) Spindel und Kinetochoren in der Mitose und Meiose der Baumwollwanze Dysdercus intermedius (Heteroptera). Chromosoma 41:271–288

    Article  CAS  PubMed  Google Scholar 

  • Sakuno T, Watanabe Y (2009) Studies of meiosis disclose distinct roles of cohesion in the core centromere and pericentromeric regions. Chromosom Res 17:239–249. doi:10.1007/s10577-008-9013-y

    Article  CAS  Google Scholar 

  • Schneider MC, Zacaro AA, Pinto-da-Rocha R, Candido DM, Cella DM (2009) Complex meiotic configuration of the holocentric chromosomes: the intriguing case of the scorpion Tityus bahiensis. Chromosom Res 17:883–898. doi:10.1007/s10577-009-9076-4

    Article  CAS  Google Scholar 

  • Schneider MC, Mattos VF, Carvalho LS, Cella DM (2015) Organization and behavior of the synaptonemal complex during achiasmatic meiosis of four buthid scorpions. Cytogenet Genome Res 144:341–347. doi:10.1159/000375388

  • Schrader F (1935) Notes an the mitotic behavior of long chromosomes. Cytologia 6:422–430

    Article  Google Scholar 

  • Shakes DC, Wu JC, Sadler PL, Laprade K, Moore LL, Noritake A, Chu DS (2009) Spermatogenesis-specific features of the meiotic program in Caenorhabditis elegans. PLoS Genet 5:e1000611. doi:10.1371/journal.pgen.1000611

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shanahan CM (1989) Cytogenetics of Australian scorpions .1. Interchange polymorphism in the family Buthidae. Genome 32:882–889

    Article  Google Scholar 

  • Sheikh SA, Kondo K, Hoshi Y (1995) Study of diffused centromeric nature of Drosera chromosomes. Cytologia 60:43–47

    Article  Google Scholar 

  • Stear JH, Roth MB (2004) The Caenorhabditis elegans kinetochore reorganizes at prometaphase and in response to checkpoint stimuli. Mol Biol Cell 15:5187–5196. doi:10.1091/mbc.E04-06-0486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steiner FA, Henikoff S (2014) Holocentromeres are dispersed point centromeres localized at transcription factor hotspots. eLife 3:e02025. doi:10.7554/eLife.02025

    Article  PubMed  PubMed Central  Google Scholar 

  • Steiner FA, Henikoff S (2015) Diversity in the organization of centromeric chromatin. Curr Opin Genet Dev 31:28–35. doi:10.1016/j.gde.2015.03.010

    Article  CAS  PubMed  Google Scholar 

  • Suja JA, del Cerro AL, Page J, Rufas JS, Santos JL (2000) Meiotic sister chromatid cohesion in holocentric sex chromosomes of three heteropteran species is maintained in absence of axial elements. Chromosoma 109:35–43

    Article  CAS  PubMed  Google Scholar 

  • Sullivan BA, Blower MD, Karpen GH (2001) Determining centromere identity: cyclical stories and forking paths. Nat Rev Genet 2:584–596. doi:10.1038/35084512

    Article  CAS  PubMed  Google Scholar 

  • Suomalainen E (1966) Achiasmatische oogenese bei trichopteren. Chromosoma 18:201–207

    Article  Google Scholar 

  • Tanaka N, Tanaka N (1977) Chromosome studies in Chionographis (Liliaceae) I. Holokinetic nature of chromosomes in Chionographis japonica maxim. Cytologia 42:753–763

    Article  Google Scholar 

  • Tempelaar MJ, Drenth-Diephuis LJ (1983) Ultrastructure of holokinetic mitotic chromosomes and interphase nuclei of Tetranychus urticae Koch (Acari, Tetranychidae) in relation to loss and missegregation of induced fragments. Chromosoma 88:98–103. doi:10.1007/BF00327328

    Article  Google Scholar 

  • Traut W (1977) A study of recombination, formation of chiasmata and synaptonemal complexes in female and male meiosis of Ephestia kuehniella (Lepidoptera). Genetica 47:135–142. doi:10.1007/BF00120178

    Article  Google Scholar 

  • Viera A, Page J, Rufas JS (2009) Inverted meiosis: the true bugs as a model to study. Genome Dyn 5:137–156. doi:10.1159/000166639

  • Wanner G, Schroeder-Reiter E, Ma W, Houben A, Schubert V (2015) The ultrastructure of mono- and holocentric plant centromeres: an immunological investigation by structured illumination microscopy and scanning electron microscopy. Chromosoma. doi:10.1007/s00412-015-0521-1

    Google Scholar 

  • Wignall SM, Villeneuve AM (2009) Lateral microtubule bundles promote chromosome alignment during acentrosomal oocyte meiosis. Nat Cell Biol 11:839–844. doi:10.1038/ncb1891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf KW (1996) Acetylation of alpha-tubulin in male meiotic spindles of Pyrrhocoris apterus, an insect with holokinetic chromosomes. Protoplasma 191:148–157

    Article  CAS  Google Scholar 

  • Wolf KW (1997) Kinetic organization of metaphase I bivalents in spermatogenesis of Lepidoptera and Trichoptera species with small chromosome numbers. Heredity 79:35–143

    Article  Google Scholar 

  • Wolf KW, Novak K, Marec F (1992) Chromosome structure in spermatogenesis of Anabolia furcata (Trichoptera). Genome 35:46–52

    Article  Google Scholar 

  • Wolfe SL, John B (1965) The organization and ultrastructure of male meiotic chromosomes in Oncopeltus fasciatus. Chromosoma 17:85–103

    Article  CAS  PubMed  Google Scholar 

  • Wrensch DL, Kethley JB, Norton RA (1994) Cytogenetics of holokinetic chromosomes and inverted meiosis: keys to the evolutionary success of mites, with generalizations on eukaryotes. In: Houck MA (ed) Mites: ecological and evolutionary analyses of life history patterns. Chapman and Hall, New York, London, pp. 282–343

    Chapter  Google Scholar 

Download references

Acknowledgments

AM is supported by CNPq/FAPEAL and AP-H by CNPq. The authors also thank Andreas Houben, IPK-Gatersleben, Germany, for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Pedrosa-Harand.

Ethics declarations

Conflict of interest

AM declares that he has no conflict of interest. AP-H declares that she has no conflict of interest.

Human and animal rights and informed consent

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

This article is related to the 21st International Chromosome Conference (Foz do Iguaçu, Brazil, July 10–13, 2016).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marques, A., Pedrosa-Harand, A. Holocentromere identity: from the typical mitotic linear structure to the great plasticity of meiotic holocentromeres. Chromosoma 125, 669–681 (2016). https://doi.org/10.1007/s00412-016-0612-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-016-0612-7

Keywords

Navigation