Skip to main content

Holocentric Chromosomes

  • Chapter
  • First Online:
Plant Genome Diversity Volume 2

Abstract

In contrast to the “normal type” of monocentric mitotic chromosomes, where spindle attachment is restricted to a single kinetochore, holocentric chromosomes are chromosomes to which spindle microtubules attach along the whole length through kinetochores that cover a substantial part of their poleward surfaces during mitosis. In addition, holocentric sister chromatids are interconnected along their whole lengths before anaphase disjunction, unlike monocentric chromatids, which cohere only in the pericentromeric area. The morphological distinctions between monocentric and holocentric chromosomes are associated with differences in chromatin structure and modified mitosis or meiosis, as well as karyotype evolution of the holocentrics themselves. In this chapter, we will survey these aspects of holocentrism and also discuss some hypotheses on the origin of holocentric chromosomes, their patterns of occurrence and methods of verification, particularly among plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    To avoid confusion with the more narrowly defined term “holokinetic”, which describes meiotic chromosome behaviour as the opposite of telokinetic behaviour, we prefer to use the term “holocentric” to indicate the opposite of the monocentric chromosomal nature.

  2. 2.

    A similar state, sometimes considered to be transitional between monocentrism and holocentrism, is the formation of a neocentromere, a chromosomal region that differs in its sequence and structure but can function like a centromere in meiotic chromosomes. However, the neocentromere in plants is more likely just an aberrant structure that occurs occasionally in some individuals or populations (Dawe and Hiatt 2004). The majority of plant neocentromeres are the outcome of meiotic drive (Dawe and Hiatt 2004), which is one of the possible mechanisms that has been suggested to explain the origin of holocentric chromosomes (see Sect. 12.8).

  3. 3.

    Holocentric chromosomes have been studied in detail only in the economically important nutmeg tree Myristica fragrans. Although chromosome counts have been reported for seven additional species in Myristicaceae, accounting for approximately 2% of the species richness of the family (Bolkhovskikh et al. 1969; Goldblatt and Johnson 2010), the lack of detailed cytological analysis means that the presence of holocentric chromosomes is unclear.

  4. 4.

    Although holocentrism has been experimentally confirmed several times in the genus Luzula, it has been proposed to exist but not satisfactorily proven in the genus Juncus (Godward 1985) and other monotypic genera of Juncaceae (but see Sect. 12.7.3). In addition, in the closely related family Thurniaceae (comprising four species of Thurnia and Prionium), there is currently no karyological research so it is unknown whether holocentric chromosomes are present here (Bolkhovskikh et al. 1969; Goldblatt and Johnson 2010).

  5. 5.

    This represents the third most species-rich monocot family after orchids and grasses. Numerous studies from the latter half of the twentieth century reported localized centromeres in Cyperaceae from S Asia, but these studies were rightfully doubted by Greilhuber (1995), who considered them to be based on chromosomal constrictions observed during mitotic prophase or metaphase, when chromosomes are not entirely contracted. Holocentrism has since been definitively confirmed experimentally in several taxa and should thus be considered as a family synapomorphy (Greilhuber 1995).

  6. 6.

    The subfamily Chionographioideae comprises two monotypic genera—Chionographis and Chamaelirium. Given the presence of holocentric chromosomes in Chionographis, it has been suggested that Chamaelirium luteum may also possess such chromosomes. However, cytological studies have so far failed to show whether the 18 chromosomes, which are very small compared with other species in Melanthiaceae, are holocentric or monocentric (Thomas Meagher, personal communication).

  7. 7.

    The putative holocentrism reported by Chakravorti (1948a, b) in the families Zingiberaceae and Musaceae from the monocots was not confirmed in later studies.

  8. 8.

    Holocentrism is present in the Cuscuta subgenus Cuscuta, whereas monocentrism has been confirmed in the subgenus Monogyna. Recently, holocentric chromosomes were also found in some taxa of the subgenus Grammica (Guerra et al. 2010), in which monocentrism was expected. In the subgenus Grammica, the sizes of the genomes and chromosomes are highly divergent (McNeal et al. 2007), which could indirectly suggest the presence of holocentrism (see Sect. 12.7.1).

  9. 9.

    In Aldrovanda, a related monotypic genus of Droseraceae, chromosomes are very small and isodiametric without any apparent primary constriction, but their holocentric nature has never been satisfactorily confirmed. The monotypic genus Dionaea from the same family, however, possesses monocentric chromosomes, as does Drosophyllum, a monotypic genus recently separated into a different monotypic family.

  10. 10.

    The unclear centromeric status reported by Vaarama (1954) in the moss Pleurozium schreberi which is sometimes considered to be holocentric, is actually neocentromeric activity (Dawe and Hiatt 2004).

  11. 11.

    In mitosis, the sister chromatids are clearly defined both in holocentrics and monocentrics as two identical (daughter) chromatids derived from duplication (replication) of one and the same chromosome during of the cell cycle [see e.g., King RC, Stansfield WD, Mulligan PK (2006) A dictionary of genetics. 7th Ed. Oxford Univ. Press, Oxford]. In meiosis, the term “sister” regarding to patchwork chromatids recombined via crossover is not so easy to define in holocentrics as in monocentrics where connection of centromeres defines which two chromatids are sister while those which are not joined by a common centromere are non-sister (= homolog) chromatids [see e.g., Brooker RJ (2009) Genetics: analysis & principles. 3rd Ed. McGraw-Hill Irwin, New York, p. 49, 821]. In holocentrics, the “majority rule” defines sister and non-sister chromatids meaning that sister chromatids share longer identical segments originated via replication, while non-sister chromatids share shorter absolutely identical segments. From a practical viewpoint, the terms “sister” and “non-sister” well fitted to mitotic chromosomes are universally conserved by such additional criteria (common centromere or “majority rule”) for any type (mitosis or meiosis, holocentric or monocentric) or phase (pre- or postrecombinational) of cell division to overcome the difficulty that no original sister chromatids are present anymore after recombination.

  12. 12.

    As a consequence of the fission or fusion of chromosomes, trivalents are sometimes formed during meiosis: two fragments are homologous to one non-fragmented chromosome, or one fused chromosome is homologous to the two non-fused ones. Two types of segregation are possible in this case. In the first case (telokinetic meiosis), the larger chromosome migrates to one pole, whereas the two shorter chromosomes migrate to the other pole during meiosis I. In the second case (holokinetic meiosis), two triads of individual chromatids segregate. This specific situation, if observed, could be also used to identify the holokinetic or telokinetic type of meiosis.

  13. 13.

    In plants, telokinetic meiosis was reported in Luzula elegans by Malheiros et al. (1947), who suggested that during anaphase I and II, the kinetic activity is restricted to both ends of each chromosome. This species was later analysed more precisely by Östergren (1949), who claimed that L. elegans chromosomes undergo inverted meiosis (i.e., holokinetic behaviour). The holokinetic chromosomal behaviour has also been reported in other species of Luzula (Nordenskiöld 1962, 1963; Braselton 1971, 1981).

  14. 14.

    Such a low chromosome number has been found in only five other angiosperms: Zingeria biebersteiniana, Colpodium versicolor, Brachycome dichromosomatica, Haplopappus gracilis, and Ornithogalum tenuifolium (Cremonini 2005).

  15. 15.

    The gain or loss of a particular chromosome or chromosomes due to non-disjunction during irregular meiotic chromosomal segregation.

  16. 16.

    In some holocentric taxa, the wide range of intraspecific variation may also be associated with true aneuploidy, for example, in Eleocharis uniglumis s. l. (2n = 44−51, 53−56, 59−89, 92; Strandhede 1965b, 1966; Bureš 1998), where the chromosome number and DNA content are linearly correlated (Bureš and Kneřová unpubl.). Other examples of true aneuploidy in Carex are reviewed by Hipp et al. (2009).

  17. 17.

    The presence of more than one cytotype in the species was documented in more than 100 species of Carex and many other taxa of Cyperaceae (Roalson 2008; Hipp et al. 2009).

  18. 18.

    Karyotypic orthoselection occurs when a particular type of chromosomal rearrangement is present recurrently in a phylogenetic lineage (White 1973). In this case, the presence of fission or fusion is assumed to have occurred.

  19. 19.

    In those species with the largest chromosomes, Ty1-copia LTR retrotransposons (assuming that all were full-length) might form up to 70% of the genomic DNA (Zedek et al. 2010)

  20. 20.

    The pseudomonad pollen formation was shown to be synapomorphic for the more derived clades of Cyperaceae, but absent in the early diverging clade of the subfamily Mapanioideae (Simpson et al. 2003).

  21. 21.

    In addition to these three main size categories, giant (A0) and tiny chromosomes are present in this genus in Luzula elegans (= L. purpurea) and L. pilosa, respectively. See inner box in Fig. 12.3.

  22. 22.

    An extremely high intraspecific and intraplant variation in chromosome number was found by Kuta et al. (2004) in the cultivated seedlings of Luzula multiflora, in which the somatic chromosome number varied 6.83-fold (from 12 to 84), whereas the DNA content varied just 1.04-fold (from 1.796 to 1.864 pg). This observation suggests a high frequency of agmatoploidy even during ontogenesis; however, other studies have not documented such chromosome variation in this species (Nordenskiöld 1951; Kirschner 1992; Bačič et al. 2007). Because samples were based on seeds obtained from the Botanical Garden of Stuttgart (Kuta et al. 2004), testing whether that observed pattern is also present in natural populations or among progeny cultivated from the seeds collected from wild plants of this species would be appropriate.

  23. 23.

    The probable presence of such fragile points on the chromosomes of Carex has also been speculated by Luceño (1994).

  24. 24.

    Considering that terminal blocks of heterochromatin exhibiting “centromeric activity” in telokinetic (holocentric) germline chromosomes of the nematode Parascaris univalens originated by the segmental amplification of repeats derived from telomeric repeats (Niedermaier and Moritz 2000).

  25. 25.

    Tandem repeats (including the telomeric repeat TTAGGC) are indeed dispersed at multiple internal sites of the holocentric chromosomes of the nematode Caenorhabditis elegans, although they are more abundant at the ends (C. elegans Sequencing Consortium 1998).

  26. 26.

    Actually, this observation would be true in animals, which are usually gonochoric. In plants, the male sterility of structural heterozygotes (individuals possessing different types of homologous centromeres) should not decrease population fitness because these male-sterile individuals have to produce sexual progeny exclusively via outcrossing, which would thus counterbalance the eventual inbreeding depression that originates due to the selfing of hermaphrodites. In other words, a pattern similar to gynodioecy would result.

References

  • Albertson DG, Thomson NJ (1993) Segregation of holocentric chromosomes at meiosis in the nematode, Caenorhabditis elegans. Chromosome Res 1:15–26

    Article  PubMed  CAS  Google Scholar 

  • Ananiev EV, Phillips RL, Rines HW (1998) Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proc Natl Acad Sci USA 95:13073–13078

    Article  PubMed  CAS  Google Scholar 

  • Bačič T, Jogan N, Dolenc Koce J (2007) Luzula sect. Luzula in the south-eastern Alps—karyology and genome size. Taxon 56:129–136

    Google Scholar 

  • Barlow PW, Nevin D (1976) Quantitative karyology of some species of Luzula. Plant Syst Evol 125:77–86

    Article  Google Scholar 

  • Bennett MD, Leitch IJ (2005) Angiosperm DNA C-values database (release 6.0, Oct 2005) http://www.kew.org/cvalues/

  • Bhatti N, Datson P, Murray B (2007) Chromosome number, genome size and phylogeny in the genus Schoenus (Cyperaceae). Chromosome Res 15(suppl 2):33–34

    Google Scholar 

  • Bokhari FS (1976) Meiosis in untreated and irradiated Cyperus eragrostis. Cytologia 41:607–614

    Article  Google Scholar 

  • Bokhari FS, Godward MBE (1980) The ultrastructure of the diffuse kinetochore in Luzula nivea. Chromosoma (Berl) 79:125–136

    Article  Google Scholar 

  • Bolkhovskikh Z, Grif V, Matvejeva T, Zakharyeva O (1969) Chromosome numbers of flowering plants. Nauka, Leningrad

    Google Scholar 

  • Bongiorni S, Fiorenzo P, Pippoletti D, Prantera G (2004) Inverted meiosis and meiotic drive in mealybugs. Chromosoma 112:331–341

    Article  PubMed  Google Scholar 

  • Braselton JP (1971) The ultrastructure of the non-localized kinetochores of Luzula and Cyperus. Chromosoma 36:89–99

    Article  Google Scholar 

  • Braselton JP (1981) The ultrastructure of meiotic kinetochores of Luzula. Chromosoma (Berl) 82:143–151

    Article  Google Scholar 

  • Brown KS Jr, von Schoultz B, Suomalainen E (2004) Chromosome evolution in Neotropical Danainae and Ithomiinae (Lepidoptera). Hereditas 141:216–236

    Article  Google Scholar 

  • Brown KS Jr, Freitas AVL, Wahlberg N, von Schoultz B, Saura AO, Saura A (2007) Chromosomal evolution in the South American Nymphalidae. Hereditas 144:137–148

    Article  PubMed  Google Scholar 

  • Buchwitz BJ, Ahmad K, Moore LL, Roth MB, Henikoff S (1999) Cell division: a histone-H3-like protein in C. elegans. Nature 401:547–548

    Article  PubMed  CAS  Google Scholar 

  • Bureš P (1998) A high polyploid Eleocharis uniglumis s.l. (Cyperaceae) from Central and Southeastern Europe. Folia Geobot 33:429–439

    Article  Google Scholar 

  • Bureš P, Rotreklová O, Stoneberg Holt SD, Pikner R (2004) Cytogeographical survey of Eleocharis subser. Eleocharis in Europe 1: Eleocharis palustris. Folia Geobot 39:235–257

    Article  Google Scholar 

  • C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:2012–2018

    Article  Google Scholar 

  • Cayouette J, Morisset P (1986a) Chromosome studies on the Carex salina complex (Cyperaceae, section Cryptocarpae) in northeastern North America. Cytologia 51:817–856

    Article  Google Scholar 

  • Cayouette J, Morisset P (1986b) Chromosome studies on Carex paleacea Wahl., C. nigra (L.) Reichard and C. aquatilis Wahl. in northeastern North America. Cytologia 51:857–883

    Article  Google Scholar 

  • Chakravorti AK (1948a) Multiplication of chromosome numbers in relation to speciation in Zingiberaceae. Sci Cult 14:137–140

    Google Scholar 

  • Chakravorti AK (1948b) Theory of fragmentation of chromosomes and evolution of species. Sci Cult 13:309–312

    Google Scholar 

  • Cheng ZK, Dong FG, Langdon T, Shu OY, Buell CR, Gu MH, Blattner FR, Jiang JM (2002) Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell 14:1691–1704

    Article  PubMed  CAS  Google Scholar 

  • Claycomb JM, Batista PJ, Pang KM, Gu WF, Vasale JJ, van Wolfswinkel JC, Chaves DA, Shirayama M, Mitani S, Ketting RF et al (2009) The argonaute CSR-1 and its 22G-RNA cofactors are required for holocentric chromosome segregation. Cell 139:123–134

    Article  PubMed  CAS  Google Scholar 

  • Cook LG (2000) Extraordinary and extensive karyotypic variation: a 48-fold range in chromosome number in the gall-inducing scale insect Apiomorpha (Hemiptera: Coccoidea: Eriococcidae). Genome 43:255–263

    PubMed  CAS  Google Scholar 

  • Cope TA, Stace CA (1985) Cytology and hybridization in the Juncus bufonius L. aggregate in Western Europe. Watsonia 15:309–320

    Google Scholar 

  • Cremonini R (2005) Low chromosome number angiosperms. Caryologia 58:403–409

    Google Scholar 

  • d’Alençon E, Sezutsu H, Legeai F, Permal E, Bernard-Samain S, Gimenez S, Gagneur C, Cousserans F, Shimomura M, Brun-Barale A, Flutre T, Couloux A, East P, Gordon K, Mita K, Quesneville H, Fournier P, Feyereisen R (2010) Extensive synteny conservation of holocentric chromosomes in Lepidoptera despite high rates of local genome rearrangements. Proc Natl Acad Sci USA 107:7680–7685

    Article  PubMed  Google Scholar 

  • da Silva CRM, González-Elizondo MS, Vanzela ALL (2005) Reduction in chromosome number in Eleocharis subarticulata (Cyperaceae) by multiple translocation. Bot J Linn Soc 149:457–464

    Article  Google Scholar 

  • da Silva CRM, González-Elizondo MS, LdNadA R, Torezan JMD, Vanzela ALL (2008a) Cytogenetical and cytotaxonomical analysis of some Brazilian species of Eleocharis. Aust J Bot 56:82–90

    Article  Google Scholar 

  • da Silva CRM, González-Elizondo MS, Vanzela ALL (2008b) Chromosome reduction in Eleocharis maculosa (Cyperaceae). Cytogenet Genome Res 122:175–180

    Article  PubMed  Google Scholar 

  • da Silva CRM, Quintas CC, Vanzela ALL (2010) Distribution of 45S and 5S rDNA sites in 23 species of Eleocharis (Cyperaceae). Genetica 138:951–957

    Article  PubMed  CAS  Google Scholar 

  • Dawe RK, Henikoff S (2006) Centromeres put epigenetics in the driver’s seat. Trends Biochem Sci 31:662–669

    Article  PubMed  CAS  Google Scholar 

  • Dawe RK, Hiatt EN (2004) Plant neocentromeres: fast, focused, and driven. Chromosome Res 12:655–669

    Article  PubMed  CAS  Google Scholar 

  • de Carvalho CE, Zaaijer S, Smolikov S, Gu Y, Schumacher JM, Colaiacovo MP (2008) LAB-1 antagonizes the Aurora B kinase in C. elegans. Genes Dev 22:2869–2885

    Article  PubMed  CAS  Google Scholar 

  • de Castro D, Camara A, Malheiros N (1949) X-rays in the centromere problem of Luzula purpurea LINK. Genet Iber 1:49–54

    Google Scholar 

  • de Lesse H (1970) Les nombres de chromosomes dans le groupe de Lysandra argester et leur incidence sur la taxonomie. Bull Soc Entomol Fr 75:64–68

    Google Scholar 

  • de Villena FPM, Sapienza C (2001a) Female meiosis drives karyotypic evolution in mammals. Genetics 159:1179–1189

    Google Scholar 

  • de Villena FPM, Sapienza C (2001b) Nonrandom segregation during meiosis: the unfairness of females. Mamm Genome 12:331–339

    Article  Google Scholar 

  • de Villena FPM, Sapienza C (2001c) Transmission ratio distortion in offspring of heterozygous female carriers of Robertsonian translocations. Hum Genet 108:31–36

    Article  Google Scholar 

  • Dernburg AF (2001) Here, there, and everywhere: kinetochore function on holocentric chromosomes. Cell Biol 6:F33–F38

    Article  Google Scholar 

  • Diaz MO, Maynard R, Brum-Zorrilla N (2010) Diffuse centromere and chromosome polymorphism in haplogyne spiders of the families Dysderidae and Segestriidae. Cytogenet Genome Res 128:131–138

    Article  PubMed  CAS  Google Scholar 

  • Dumont J, Oegema K, Desai A (2010) A kinetochore-independent mechanism drives anaphase chromosome separation during acentrosomal meiosis. Nat Cell Biol 12:894–901

    Article  PubMed  CAS  Google Scholar 

  • Emmons SW (1988) The genome. In: Wood WB (ed) The nematode Caenorhabditis elegans. Cold Spring Harbor Laboratory Press, New York, pp 47–79

    Google Scholar 

  • Escudero M, Valcárcel V, Vargas P, Luceño M (2008) Evolution in Carex L. sect. Spirostachyae (Cyperaceae): a molecular and cytogenetic approach. Organ Divers Evol 7:271–291

    Article  Google Scholar 

  • Faulkner JS (1972) Chromosome studies on Carex section Acutae in northwest Europe. Bot J Linn Soc 65:271–301

    Article  Google Scholar 

  • Fishman L, Saunders A (2008) Centromere-associated female meiotic drive entails male fitness costs in monkeyflowers. Science 322:1559–1562

    Article  PubMed  CAS  Google Scholar 

  • Flach M (1966) Diffuse centromeres in a dicotyledonous plant. Nature 209:1369–1370

    Article  Google Scholar 

  • Furness CA, Rudall PJ (2010) Selective microspore abortion correlated with aneuploidy: an indication of meiotic drive. Sex Plant Reprod. doi:10.1007/s00497-010-0150-z

  • Gernand D, Demidov D, Houben A (2003) The temporal and spatial pattern of histone H3 phosphorylation at serine 28 and serine 10 is similar in plants but differs between mono- and polycentric chromosomes. Cytogenet Genome Res 101:172–176

    Article  PubMed  CAS  Google Scholar 

  • Goday C, Pimpinelli S (1989) Centromere organization in meiotic chromosomes of Parascaris univalens. Chromosoma 98:160–166

    Article  PubMed  CAS  Google Scholar 

  • Goday C, Ciofi-Luzzatto A, Pimpinelli S (1988) Centromere ultrastructure in germ-line chromosomes of Parascaris. Chromosoma 91:121–125

    Article  Google Scholar 

  • Godward MDE (1954) The ‘diffuse’ centromere or polycentric chromosomes in Spirogyra. Ann Bot 70:143–156

    Google Scholar 

  • Godward MBE (1985) The kinetochore. Int Rev Cytol 94:77–106

    Article  PubMed  CAS  Google Scholar 

  • Goldblatt P, Johnson DE (eds) (2010) Index to plant chromosome numbers [1973–2003]. Missouri Botanical Garden, St. Louis, http://mobot.mobot.org/W3T/Search/ipcn.html

    Google Scholar 

  • Greilhuber J (1995) Chromosomes of the monocotyledons (general aspects). In: Rudall PJ, Cribb PJ, Cutler DF, Humphries CJ (eds) Monocotyledons: systematics and evolution. Kew Royal Botanic Gardens, Surrey, pp 379–414

    Google Scholar 

  • Guerra M (2000) Patterns of heterochromatin distribution in plant chromosomes. Genet Mol Biol 23:1029–1041

    Article  Google Scholar 

  • Guerra M, García MA (2004) Heterochromatin and rDNA sites distribution in the holocentric chromosomes of Cuscuta approximata Bab. (Convolvulaceae). Genome 47:134–140

    Article  PubMed  CAS  Google Scholar 

  • Guerra M, Brasileiro-Vidal AC, Arana P, Puertas MJ (2006) Mitotic microtubule development and histone H3 phosphorylation in the holocentric chromosomes of Rhynchospora tenuis (Cyperaceae). Genetica 126:33–41

    Article  PubMed  CAS  Google Scholar 

  • Guerra M, Cabral G, Cuacos M, González-García M, González-Sánchez M, Vega J, Puertas MJ (2010) Neocentrics and holokinetics (holocentrics): chromosomes out of the centromeric rules. Cytogenet Genome Res 129:82–96

    Article  PubMed  CAS  Google Scholar 

  • Haizel T, Lim YK, Leitch AR, Moore G (2005) Molecular analysis of holocentric centromeres of Luzula species. Cytogenet Genome Res 109:134–143

    Article  PubMed  CAS  Google Scholar 

  • Håkansson A (1954) Meiosis and pollen mitosis in x-rayed and untreated spikelets of Eleocharis palustris. Hereditas 15:325–345

    Google Scholar 

  • Håkansson A (1958) Holocentric chromosomes in Eleocharis. Hereditas 44:531–540

    Article  Google Scholar 

  • Hauf S, Watanabe Y (2004) Kinetochore orientation in mitosis and meiosis. Cell 119:317–327

    Article  PubMed  CAS  Google Scholar 

  • Heilborn O (1924) Chromosome numbers and dimensions, species-formation and phylogeny in the genus Carex. Hereditas 5:129–216

    Article  Google Scholar 

  • Heilborn O (1934) On the origin and preservation of polyploidy. Hereditas 19:233–242

    Article  Google Scholar 

  • Henikoff S, Ahmad K, Malik HS (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293:1098–1102

    Article  PubMed  CAS  Google Scholar 

  • Hipp AL (2007) Nonuniform processes of chromosome evolution in sedges (Carex: Cyperaceae). Evolution 61:2175–2194

    Article  PubMed  Google Scholar 

  • Hipp AL, Rothrock PE, Reznicek AA, Berry PE (2007) Chromosome number changes associated with speciation in sedges: a phylogenetic study in Carex section Ovales (Cyperaceae) using AFLP data. Aliso 23:193–203

    Google Scholar 

  • Hipp AL, Rothrock PE, Roalson EH (2009) The evolution of chromosome arrangements in Carex (Cyperaceae). Bot Rev 75:96–109

    Article  Google Scholar 

  • Hipp AL, Rothrock PE, Whitkus R, Weber JA (2010) Chromosomes tell half of the story: the correlation between karyotype rearrangements and genetic diversity in sedges, a group with holocentric chromosomes. Mol Ecol 19:3124–3138

    Article  PubMed  Google Scholar 

  • Hoshino T (1981) Karyomorphological and cytological studies on aneuploidy in Carex. J Sci Hiroshima Univ B 2(217):155–238

    Google Scholar 

  • Hoshino T (1987) Karyomorphological studies on 6 taxa of Eleocharis in Japan. Bull Okayama Univ Sci 22A:305–312

    Google Scholar 

  • Hoshino T, Waterway MJ (1994) Cytogeography and meiotic chromosome configurations of six intraspecific aneuploids of Carex conica Boott (Cyperaceae) in Japan. J Plant Res 107:131–138

    Article  Google Scholar 

  • Houben A, Demidov D, Caperta AD, Karimi R, Agueci F, Vlasenko L (2007) Phosphorylation of histone H3 in plants: a dynamic affair. Biochim Biophys Acta 1769:308–315

    Article  PubMed  CAS  Google Scholar 

  • Hughes-Schrader S, Ris H (1941) The diffuse spindle attachment of Coccids, verified by the mitotic behaviour of induced chromosome fragments. J Exp Zool 87:429–456

    Article  Google Scholar 

  • Jiang JM, Birchler JA, Parrott WA, Dawe RK (2003) A molecular view of plant centromeres. Trends Plant Sci 8:570–575

    Article  PubMed  CAS  Google Scholar 

  • Kandul NP, Lukhtanov VA, Dantchenko AV, Coleman JW, Sekercioglu CH, Haig D, Pierce NE (2004) Phylogeny of Agrodiaetus Hübner 1822 (Lepidoptera: Lycaenidae) inferred from mtDNA sequences of COI and COII and nuclear sequences of EF1-a: karyotype diversification and species radiation. Syst Biol 53:278–298

    Article  PubMed  Google Scholar 

  • King GC (1960) The cytology of the desmids: the chromosomes. New Phytol 59:65–72

    Article  Google Scholar 

  • Kirschner J (1992) Karyological differenciation of Luzula sect. Luzula in Europe. Thaiszia 2:11–39

    Google Scholar 

  • Kirschner J (1995) Allozyme analysis of Luzula sect. Luzula (Juncaceae) in Ireland: evidence of the origin of tetraploids. Folia Geobot 30:283–290

    Article  Google Scholar 

  • Knowlton AL, Lan W, Stukenberg PT (2006) Aurora B is enriched at merotelic attachment sites, where it regulates MCAK. Current Biol 16:1705–1710

    Article  CAS  Google Scholar 

  • Kondo K, Sheikh SA, Hoshi Y (1994) New finding of another 2n = 6 species in the angiosperm, Drosera roseana Marchant. Chrom Inf Service 57:3–4

    Google Scholar 

  • Krahulcová A, Papoušková S, Krahulec F (2004) Reproduction mode in the allopolyploid facultatively apomictic hawkweed Hieracium rubrum (Asteraceae, H. subgen. Pilosella). Hereditas 141:19–30

    Article  PubMed  Google Scholar 

  • Kuta E, Bohanec B, Dubas E, Vižintin L, Przywara L (2004) Chromosome and nuclear DNA study on Luzula: a genus with holokinetic chromosomes. Genome 47:246–256

    Article  PubMed  CAS  Google Scholar 

  • La Cour LF (1953) The Luzula system analysed by x-rays. Heredity Suppl 6:77–81

    Google Scholar 

  • Li X, Dawe RK (2009) Fused sister kinetochores initiate the reductional division in meiosis I. Nat Cell Biol 11:1103–1108

    Article  PubMed  CAS  Google Scholar 

  • Luceño M (1992) Cytotaxonomic studies in Iberian and Macaronesian species of Carex (Cyperaceae). Willdenowia 22:149–165

    Google Scholar 

  • Luceño M (1994) Cytotaxonomic studies in Iberian, Balearic, North African, and Macaronesian species of Carex (Cyperaceae). II. Can J Bot 72:587–596

    Article  Google Scholar 

  • Luceño M, Castroviejo S (1991) Agmatoploidy in Carex laevigata (Cyperaceae). Fusion and fission of chromosomes as the mechanism of cytogenetic evolution in Iberian populations. Plant Syst Evol 177:149–159

    Article  Google Scholar 

  • Luceño M, Guerra M (1996) Numerical variation in species exhibiting holocentric chromosomes: a nomenclatural proposal. Caryologia 49:301–309

    Google Scholar 

  • Luceño M, Vanzela A, Guerra M (1998) Cytotaxonomic studies in Brazilian Rhynchospora (Cyperaceae), a genus exhibiting holocentric chromosomes. Can J Bot 76:440–449

    Google Scholar 

  • Lukhtanov VA, Dantchenko AD (2002) Principles of the highly ordered arrangement of metaphase I bivalents in spermatocytes of Agrodiaetus (Insecta, Lepidoptera). Chromosome Res 10:5–20

    Article  PubMed  CAS  Google Scholar 

  • Lukhtanov VA, Vila R, Kandul NP (2006) Rearrangement of the Agrodiaetus dolus species group (Lepidoptera, Lycaenidae) using a new cytological approach and molecular data. Insect Syst Evol 37:325–334

    Article  Google Scholar 

  • Lysák MA, Schubert I (2013) Mechanisms of chromosome rearrangements. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds) Plant genome diversity, vol 2, Physical structure, behaviour and evolution of plant genomes. Springer-Verlag, Wien, pp 137–147

    Google Scholar 

  • Ma JX, Wing RA, Bennetzen JL, Jackson SA (2007) Plant centromere organization: a dynamic structure with conserved functions. Trends Genet 23:134–139

    Article  PubMed  CAS  Google Scholar 

  • Maddox PS, Oegema K, Desai A, Cheeseman IM (2004) “Holo”er than thou: chromosome segregation and kinetochore function in C. elegans. Chromosome Res 12:641–653

    Article  PubMed  CAS  Google Scholar 

  • Madej A, Kuta E (2001) Holokinetic chromosomes of Luzula luzuloides (Juncaceae) in callus culture. Acta Biol Cracov Ser Bot 43:33–43

    Google Scholar 

  • Malheiros N, De Castro D, Camara A (1947) Cromosomas sem centrómero localizado. O caso da Luzula purpurea Link. Agron Lusitana 9:51–71

    Google Scholar 

  • Malheiros-Garde N, de Castro D (1947) Chromosome number and behavior in Luzula purpurea Link. Nature 160:156

    Article  Google Scholar 

  • Malik HS, Henikoff S (2009) Major evolutionary transitions in centromere complexity. Cell 138:1067–1082

    Article  PubMed  CAS  Google Scholar 

  • Manzanero S, Arana P, Puertas MJ, Houben A (2000) The chromosomal distribution of phosphorylated histone H3 differs between plants and animals at meiosis. Chromosoma 109:308–317

    Article  PubMed  CAS  Google Scholar 

  • Marec F, Sahara K, Traut W (2009) Rise and fall of the W chromosome in Lepidoptera. In: Goldsmith MR, Marec F (eds) Molecular biology and genetics of the Lepidoptera. CRC Press, Boca Raton/London/New York, pp 49–63

    Google Scholar 

  • Martinez-Perez E, Schvarzstein M, Barroso C, Lightfoot J, Dernburg AF, Villeneuve AM (2008) Crossovers trigger a remodeling of meiotic chromosome axis composition that is linked to two-step loss of sister chromatid cohesion. Genes Dev 22:2886–2901

    Article  PubMed  CAS  Google Scholar 

  • Maynard Smith J, Szathmáry E (1995) The major transitions in evolution. Oxford University Press, Oxford, UK

    Google Scholar 

  • Mayrose I, Barker MS, Otto SP (2010) Probabilistic models of chromosome number evolution and the inference of polyploidy. Syst Biol 59:132–144

    Article  PubMed  Google Scholar 

  • McNeal JR, Arumugunathan K, Kuehl JV, Boore JL, dePamphilis CW (2007) Systematics and plastid genome evolution of the cryptically photosynthetic parasitic plant genus Cuscuta (Convolvulaceae). BMC Plant Biol 5:55

    Google Scholar 

  • Meneely PM, Farago AF, Kauffman TM (2002) Crossover distribution and high interference for both the X chromosome and an autosome during oogenesis and spermatogenesis in Caenorhabditis elegans. Genetics 162:1169–1177

    PubMed  CAS  Google Scholar 

  • Mola LM, Papeschi AG (2006) Holokinetic chromosomes at a glance. J Basic Appl Genet 17:17–33

    Google Scholar 

  • Monen J, Maddox PS, Hyndman F, Oegema K, Desai A (2005) Differential role of CENP-A in the segregation of holocentric C. elegans chromosomes during meiosis and mitosis. Nat Cell Biol 7:1248–1255

    Article  PubMed  CAS  Google Scholar 

  • Nabeshima K, Villeneuve AM, Colaiacovo MP (2005) Crossing over is coupled to late meiotic prophase bivalent differentiation through asymmetric disassembly of the SC. J Cell Biol 168:683–689

    Article  PubMed  CAS  Google Scholar 

  • Nagaki K, Talbert PB, Zhong CX, Dawe RK, Henikoff S, Jiang JM (2003) Chromatin immunoprecipitation reveals that the 180-bp satellite repeat is the key functional DNA element of Arabidopsis thaliana centromeres. Genetics 163:1221–1225

    PubMed  CAS  Google Scholar 

  • Nagaki K, Kashihara K, Murata M (2005) Visualization of diffuse centromeres with centromere-specific histone H3 in the holocentric plant Luzula nivea. Plant Cell 17:1886–1893

    Article  PubMed  CAS  Google Scholar 

  • Nemetschke L, Eberhardt AG, Hertzberg H, Streit A (2010) Genetics, chromatin diminution, and sex chromosome evolution in the parasitic nematode genus Strongyloides. Curr Biol 20:1687–1696

    Article  PubMed  CAS  Google Scholar 

  • Niedermaier J, Moritz KB (2000) Organization and dynamics of satellite and telomere DNAs in Ascaris: implications for formation and breakdown of compound chromosomes. Chromosoma 109:439–452

    Article  PubMed  CAS  Google Scholar 

  • Nijalingappa BH, Tejavathi DH (1984) Reports. In: Löve Á (ed) Chromosome number reports LXXXIII. Taxon vol 33, pp 352–353

    Google Scholar 

  • Nishikawa K, Furuta Y, Ishitobi K (1984) Chromosomal evolution in genus Carex as viewed from nuclear DNA content, with special reference to its aneuploidy. Jpn J Genet 59:465–472

    Article  Google Scholar 

  • Nokkala S, Kuznetsova VZ, Maryanska-Nadachowska A, Nokkala C (2004) Holocentric chromosomes in meiosis. I. Restriction of the number of chiasmata in bivalents. Chromosome Res 12:733–739

    Article  PubMed  CAS  Google Scholar 

  • Nordenskiöld H (1951) Cytotaxonomical studies in the genus Luzula. I. Somatic chromosome and chromosome numbers. Hereditas 37:325–355

    Article  Google Scholar 

  • Nordenskiöld H (1961) Tetrad analysis and the course of meiosis in three hybrids of Luzula campestris. Hereditas 47:203–238

    Article  Google Scholar 

  • Nordenskiöld H (1962) Studies of meiosis in Luzula purpurea. Hereditas 48:503–519

    Article  Google Scholar 

  • Nordenskiöld H (1963) A study of meiosis in the progeny of X-irradiated Luzula purpurea. Hereditas 49:33–47

    Article  Google Scholar 

  • Nordenskiöld H (1964) The effect of irradiation on diploid and polyploid Luzula. Hereditas 51:344–374

    Article  Google Scholar 

  • Ohkawa T, Yokota M, Hoshino T (2000) Aneuploidal population differentiation in Carex sociata Boott (Cyperaceae) of the Ryukyu Islands, Japan. Bot J Linn Soc 132:337–358

    Google Scholar 

  • Ono T, Losada A, Hirano M, Myers MP, Neuwald AF, Hirano T (2003) Differential contributions of condensin I and condensin II to mitotic chromosome architecture in vertebrate cells. Cell 115:109–121

    Article  PubMed  CAS  Google Scholar 

  • Ono T, Fang Y, Spector DL, Hirano T (2004) Spatial and temporal regulation of condensins I and II in mitotic chromosome assembly in human cells. Mol Biol Cell 15:3296–3308

    Article  PubMed  CAS  Google Scholar 

  • Östergren G (1949) Luzula and the mechanism of chromosome movements. Hereditas 4:445–468

    Google Scholar 

  • Papeschi AG, Bressa MJ (2006) Evolutionary cytogenetics in Heteroptera. J Biol Res 5:3–21

    CAS  Google Scholar 

  • Pasierbek P, Jantsch M, Melcher M, Schleiffer A, Schweizer D, Loidl J (2001) A Caenorhabditis elegans cohesion protein with functions in meiotic chromosome pairing and disjunction. Genes Dev 15:1349–1360

    Article  PubMed  CAS  Google Scholar 

  • Pazy B (1997) Supernumerary chromosomes and their behaviour in meiosis of the holocentric Cuscuta babylonica Ghoisy. Bot J Linn Soc 123:173–176

    Google Scholar 

  • Pazy B, Plitmann U (1987) Persisting demibivalents: a unique meiotic behavior in Cuscuta babylonica Choisy. Genome 29:63–66

    Article  Google Scholar 

  • Pazy B, Plitmann U (1994) Holocentric chromosome behavior in Cuscuta. Plant Syst Evol 191:105–109

    Article  Google Scholar 

  • Pazy B, Plitmann U (2002) New perspectives on the mechanisms of chromosome evolution in parasitic flowering plants. Bot J Linn Soc 138:117–122

    Article  Google Scholar 

  • Pellicer J, Fay MF, Leitch IJ (2010) The largest eukaryotic genome of them all? Bot J Linn Soc 164:10–15

    Article  Google Scholar 

  • Pérez R, Panzera F, Page J, Suja JA, Rufas JS (1997) Meiotic behaviour of holocentric chromosomes: orientation and segregation of autosomes in Triatoma infestans (Heteroptera). Chromosome Res 5:47–56

    Article  PubMed  Google Scholar 

  • Pimpinelli S, Goday C (1989) Unusual kinetochores and chromatin diminution in Parascaris. Trends Genet 5:310–315

    Article  PubMed  CAS  Google Scholar 

  • Ramsey J (2007) Unreduced gametes and neopolyploids in natural populations of Achillea borealis (Asteraceae). Heredity 98:143–150

    Article  PubMed  CAS  Google Scholar 

  • Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu Rev Ecol Syst 29:467–501

    Article  Google Scholar 

  • Ranz JM, Casals F, Ruiz A (2001) How malleable is the eukaryotic genome? Extreme rate of chromosomal rearrangement in the genus Drosophila. Genome Res 11:230–239

    Article  PubMed  CAS  Google Scholar 

  • Rath SP, Patnaik SN (1978) Cytological studies in Cyperaceae. Proc Indian Sci Congr Assoc 65:107–108

    Google Scholar 

  • Ray JH, Venketeswaran S (1978) Constitutive heterochromatin distribution in monocentric and polycentric chromosomes. Chromosoma 66:341–350

    Article  Google Scholar 

  • Rieder CL (1982) The formation, structure, and composition of the mammalian kinetochore and kinetochore fiber. Int Rev Cytol 79:1–58

    Article  PubMed  CAS  Google Scholar 

  • Rivadavia F, Kondo K, Kato M, Hasebe M (2003) Phylogeny of the sundews, Drosera (Droseraceae), based on chloroplast rbcL and nuclear 18S ribosomal DNA sequences. Am J Bot 90:123–130

    Article  PubMed  CAS  Google Scholar 

  • Roalson EH (2008) A synopsis of chromosome number variation in the Cyperaceae. Bot Rev 74:209–393

    Article  Google Scholar 

  • Roalson E, McCubbin AG, Whitkus R (2007) Chromosome evolution in Cyperales. In: Columbus JT, Friar EA, Porter JM, Prince LM, Simpson MG (eds) Monocots: comparative biology and evolution of Poales. Allen, Claremont, pp 62–71

    Google Scholar 

  • Rogers E, Bishop JD, Waddle JA, Schumacher JM, Lin R (2002) The aurora kinase AIR-2 functions in the release of chromosome cohesion in Caenorhabditis elegans meiosis. J Cell Biol 157:219–229

    Article  PubMed  CAS  Google Scholar 

  • Rooks F (2008) The Juncus bufonius polyploid complex in central Europe. Ph.D. thesis, Charles University, Prague

    Google Scholar 

  • Rotreklová O, Bureš P, Řepka R, Grulich V, Šmarda P, Hralová I, Zedek F, Koutecký T (2011) Chromosome numbers in Carex. Preslia 83:25–58

    Google Scholar 

  • Rutkowska J, Badyaev AV (2008) Meiotic drive and sex determination: molecular and cytological mechanisms of sex ratio adjustment in birds. Philos Trans Roy Soc Lond B Bio 363:1675–1686

    Article  Google Scholar 

  • Sakuno T, Tada K, Watanabe Y (2009) Kinetochore geometry defined by cohesion within the centromere. Nature 458:852–858

    Article  PubMed  CAS  Google Scholar 

  • Schönswetter P, Suda J, Popp M, Weiss-Schneeweiss H, Brochmann C (2007) Circumpolar phylogeography of Juncus biglumis (Juncaceae) inferred from AFLP fingerprints, cpDNA sequences, nuclear DNA content and chromosome numbers. Mol Phylogenet Evol 42:92–103

    Article  PubMed  CAS  Google Scholar 

  • Schrader F (1935) Notes on the mitotic behaviour of long chromosomes. Cytologia 6:422–430

    Article  Google Scholar 

  • Schwarzstein M, Wignall SM, Villeneueve AM (2010) Coordinating cohesion, co-orientation, and congression during meiosis: lessons from holocentric chromosomes. Genes Dev 24:219–228

    Article  CAS  Google Scholar 

  • Sheikh SA, Kondo K (1995) Differential staining with orcein, Giemsa, CMA and DAPI for comparative chromosome study of 12 species of Australian Drosera (Droseraceae). Am J Bot 82:1278–1286

    Article  Google Scholar 

  • Sheikh SA, Kondo K, Hoshi Y (1995) Study of diffused centromeric nature of Drosera chromosomes. Cytologia 60:43–47

    Article  Google Scholar 

  • Simpson DA, Furness CA, Hodkinson TR, Muasya AM, Chase MW (2003) Phylogenetic relationships in Cyperaceae subfamily Mapanioideae inferred from pollen and plastid DNA sequence data. Am J Bot 90:1071–1086

    Article  PubMed  CAS  Google Scholar 

  • Šmarda P, Bureš P, Horová L, Foggi B, Rossi G (2008) Genome size and GC content evolution of Festuca: ancestral expansion and subsequent reduction. Ann Bot 101:421–433

    Article  PubMed  CAS  Google Scholar 

  • Stack MS, Anderson LK (2001) A model for chromosome structure during the mitotic and meiotic cell cycle. Chromosome Res 9:175–198

    Article  PubMed  CAS  Google Scholar 

  • Stear JH, Roth MB (2002) Characterization of HCP-6, a C. elegans protein required to prevent chromosome twisting and merotelic attachment. Genes Dev 16:1498–1508

    Article  PubMed  CAS  Google Scholar 

  • Stephan W (2007) Evolution of genome organization. In: Encyclopedia of life sciences. Wiley, Chichester. doi:10.1002/9780470015902.a0001699.pub2

    Google Scholar 

  • Strandhede S-O (1965a) Chromosome studies in Eleocharis, subser. Palustres. I. Meiosis in some forms with 15 chromosomes. Hereditas 53:47–62

    Article  Google Scholar 

  • Strandhede S-O (1965b) Chromosome studies in Eleocharis, subser. Palustres. III. Observations on Western European taxa. Opera Bot 9(2):1–86

    Google Scholar 

  • Strandhede S-O (1965c) Chromosome studies in Eleocharis, subser. Palustres. IV. A possible case of an extra, reductional division giving rise to hemi-haploid pollen nuclei. Bot Not 118:243–253

    Google Scholar 

  • Strandhede S-O (1966) Morphologic variation and taxonomy in European Eleocharis, subser. Palustres. Opera Bot 10(2):1–187

    Google Scholar 

  • Sullivan BA, Blower MD, Karpen GH (2001) Determining centromere identity: cyclical stories and forking paths. Nat Rev Genet 2:584–596

    Article  PubMed  CAS  Google Scholar 

  • Sutherland GR, Baker E, Richards RI (1998) Fragile sites still breaking. Trends Genet 14:501–506

    Article  PubMed  CAS  Google Scholar 

  • Talbert PB, Bryson TD, Henikoff S (2004) Adaptive evolution of centromere proteins in plants and animals. BMC Biol 3:18

    Google Scholar 

  • Talbert PB, Bayes JJ, Henikoff S (2009) Evolution of centromeres and kinetochores: a two-part fugue. In: De Wulf P, Earnshaw WC (eds) The kinetochore: from molecular discoveries to cancer therapy. Springer, New York, pp 193–229

    Google Scholar 

  • Tanaka N (1940) Chromosome studies in Cyperaceae. VIII. Meiosis in diploid and tetraploid forms of Carex siderosticta Hance. Bot Mag (Tokyo) 10:282–310

    Google Scholar 

  • Tanaka N (1941) Chromosome studies in Cyperaceae. XIII. Aneuploid plants of Carex podogyna Franch et Sav. with special reference to an abnormal pollen. Bot Mag (Tokyo) 55:181–186

    Google Scholar 

  • Tanaka N (1949) Chromosome studies in the genus Carex with special reference to aneuploidy and polyploidy. Cytologia 15:15–29

    Article  Google Scholar 

  • Tanaka N, Tanaka N (1979) Chromosome studies in Chionographis (Liliaceae). II. Morphological characteristics of the somatic chromosomes of four Japanese members. Cytologia 44:935–949

    Article  Google Scholar 

  • Tanaka N, Tanaka N (1980) Chromosome studies in Chionographis (Liliaceae). III. The mode of meiosis. Cytologia 45:809–817

    Article  Google Scholar 

  • Tejavathi DH (1988) Somatic instability in the populations of Cyperus cyperoides (L.) O. Kuntze (Cyperaceae). Current Sci 57:724–728

    Google Scholar 

  • Tobler H, Müller F (2001) Chromatin diminution. In: Encyclopedia of life sciences. Wiley, Chichester. doi:10.1038/npg.els.0001181

    Google Scholar 

  • Toivonen H (1981) Spontaneous Carex hybrids of Heleonastes and related sections in Fennoscandia. Acta Bot Fenn 116:1–51

    Google Scholar 

  • Underkoffler LA, Mitchell LE, Abdulali ZS, Collins JN, Oakey RJ (2005) Transmission ratio distortion in offspring of mouse heterozygous carriers of a (7.18) Robertsonian translocation. Genetics 169:843–848

    Article  PubMed  Google Scholar 

  • Vaarama A (1954) Cytological observations on Pleurozium schreberi, with special reference to centromere evolution. Ann Bot Soc Vanamo 28:1–59

    Google Scholar 

  • Vanzela ALL, Colaço W (2002) Mitotic and meiotic behavior of γ irradiated holocentric chromosomes of Rhynchospora pubera (Cyperaceae). Acta Sci Maringá 24:611–614

    Google Scholar 

  • Vanzela ALL, Guerra M (2000) Heterochromatin differenciation in holocentric chromosomes of Rhynchospora (Cyperaceae). Genet Mol Biol 23:453–546

    Article  Google Scholar 

  • Vanzela ALL, Guerra M, Luceño M (1996) Rhynchospora tenuis Link (Cyperaceae), a species with the lowest number of holocentric chromosomes. Cytobios 88:219–228

    Google Scholar 

  • Vanzela ALL, Cuadrado A, Jouve N, Luceño M, Guerra M (1998) Multiple locations of the rDNA sites in holocentric chromosomes of Rhynchospora (Cyperaceae). Chromosome Res 6:345–349

    Article  PubMed  CAS  Google Scholar 

  • Vanzela ALL, Luceño M, Guerra M (2000) Karyotype evolution and cytotaxonomy in Brazilian species of Rhynchospora Vahl (Cyperaceae). Bot J Linn Soc 134:557–566

    Article  Google Scholar 

  • Vanzela ALL, Cuadrado A, Guerra M (2003) Localization of 45 S rDNA and telomeric sites on holocentric chromosomes of Rhynchospora tenuis Link (Cyperaceae). Genet Mol Biol 26:199–201

    Article  CAS  Google Scholar 

  • Villasante A, Abad JP, Méndez-Lago M (2007) Centromeres were derived from telomeres during the evolution of the eukaryotic chromosome. Proc Natl Acad Sci USA 104:10542–10547

    Article  PubMed  CAS  Google Scholar 

  • Wahl HA (1940) Chromosome numbers and meiosis in the genus Carex. Am J Bot 27:458–470

    Article  Google Scholar 

  • Waterway MJ, Hoshino T, Masaki T (2009) Phylogeny, species richness, and ecological specialization in Cyperaceae tribe Cariceae. Bot Rev 75:138–159

    Article  Google Scholar 

  • White MJD (1973) Animal cytology and evolution. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Yano O, Hoshino T (2006) Phylogenetic relationships and chromosomal evolution of Japanese Fimbristylis (Cyperaceae) using nrDNA ITS and ETS 1f sequence data. Acta Phytotax Geobot 57:205–217

    Google Scholar 

  • Yano O, Katsuyama T, Tsubota H, Hoshino T (2004) Molecular phylogeny of Japanese Eleocharis (Cyperaceae) based on ITS sequence data, and chromosomal evolution. J Plant Res 117:409–419

    Article  PubMed  CAS  Google Scholar 

  • Záveská-Drábková L, Vlček Č (2010) Molecular phylogeny of the genus Luzula DC. (Juncaceae, Monocotyledones) based on plastome and nuclear ribosomal regions: a case of incongruence, incomplete lineage sorting and hybridisation. Mol Phylogenet Evol 57:536–551

    Article  PubMed  CAS  Google Scholar 

  • Zedek F, Smerda J, Smarda P, Bureš P (2010) Correlated evolution of LTR retrotransposons and genome size in the genus Eleocharis. BMC Plant Biol 10:265

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Our study was supported by the Czech Science Foundation (Grant no. GACR206/09/1405) and by the Ministry of Education, Youth and Sports of the Czech Republic (Grants no. MSM0021622416, and LC06073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Bureš Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Bureš, P., Zedek, F., Marková, M. (2013). Holocentric Chromosomes. In: Greilhuber, J., Dolezel, J., Wendel, J. (eds) Plant Genome Diversity Volume 2. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1160-4_12

Download citation

Publish with us

Policies and ethics