Skip to main content
Log in

Centromere organization in meiotic chromosomes of Parascaris univalens

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

The chromosomes of Parascaris univalens possess a continuous centromeric structure spanning their entire length in gonial cells. A cytological and ultrastructural analysis of P. univalens meiotic chromosomes was performed. The results show that during meiosis the holocentric germline chromosomes of male P. univalens undergo restriction of kinetic activity to the heterochromatic terminal regions. These regions lack kinetochore structures and interact directly with spindle microtubules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albertson DG, Thomson JN (1982) The kinetochores of Caenorhabditis elegans. Chromosoma 86:409–428

    Google Scholar 

  • Boveri T (1910) Die Potenzen der Ascaris-Blastomeren bei abgeänderter Furchung. Festschr R Hertwig 3:131–214

    Google Scholar 

  • Buck RC (1967) Mitosis and meiosis in Rhodnius prolixus: the fine structure of the spindle and diffuse kinetochore. J Ultrastract Res 18:489–501

    Google Scholar 

  • Comings DE, Okada TA (1972) Holocentric chromosomes in Oncopeltus: kinetochore plates are present in mitosis and absent in meiosis. Chromosoma 37:177–192

    Google Scholar 

  • Favard P (1961) Évolution des ultrastructures cellulaires au cours de la spermatogenè se de l'Ascaris. Ann Sci Nat Zool Ser 12:53–152

    Google Scholar 

  • Friedlander M, Wahrman J (1970) The spindle as a basal body distributor. A study in the meiosis of the male silkworm moth Bombyx mori. J Cell Sci 7:65–89

    Google Scholar 

  • Gatti M, Pimpinelli S, Santini G (1976) Characterization of Drosophila heterochromatin. I. Staining and decondensation with Hoechst 33258 and Quinacrine. Chromosoma 75:351–375

    Google Scholar 

  • Goday C, Pimpinelli S (1984) Chromosome organization and heterochromatin elimination in Parascaris. Science 224:411–413

    Google Scholar 

  • Goday C, Pimpinelli S (1986) Cytological analysis of chromosomes in the two species Parascaris univalens and P. equorum. Chromosoma 94:1–10

    Google Scholar 

  • Goday C, Ciofi-Luzzatto A, Pimpinelli S (1985) Centromere ultrastructure in germ-line chromosomes of Parascaris. Chromosoma 91:121–125

    Google Scholar 

  • Godward MBE (1985) The kinetochore. Int Rev Cytol 94:77–104

    Google Scholar 

  • Goldstein P (1977) Spermatogenesis and spermiogenesis in Ascaris lumbricoides var. suum. J Morphol 154:317–338

    Google Scholar 

  • Goldstein P, Triantaphyllou A (1980) The ultrastructure of sperm development in the plant-parasitic nematode Meloidogyne hapla. J Ultrastruct Res 71:143–153

    Google Scholar 

  • Hennig W (1973) In situ molecular hybridization of DNA and RNA. Int Rev Cytol 36:1–40

    Google Scholar 

  • Hertwig O (1890) Vergleich der Ei- und Samenbildung bei Nematoden. Arch Mikrosk Anat 36:1–137

    Google Scholar 

  • Hughes-Schrader S, Schrader F (1961) The kinetochore of the Hemiptera. Chromosoma 12:327–350

    Google Scholar 

  • Kingwell B, Rattner JB (1987) Mammalian kinetochore/centromere composition. A 50 kDa antigen is present in the mammalian kinetochore/centromere. Chromosoma 95:403–407

    Google Scholar 

  • Lin TP (1954) The chromosomal cycle in Parascaris equorum (Ascaris megalocephala); oogenesis and diminution. Chromosoma 6:175–198

    Google Scholar 

  • Mitchison TJ, Kirschner MW (1985) Properties of the kinetochore In vitro. I Microtubule nucleation and tubulin binding. J Cell Biol 101:755–765

    Google Scholar 

  • Moritz KB, Roth GE (1976) Complexity of germline and somatic DNA in Ascaris. Nature 259:55–57

    Google Scholar 

  • Nokkala S (1985) Restriction of kinetic activity of holokinetic chromosomes in meiotic cells and its structural basis. Hereditas 102:85–88

    Google Scholar 

  • Pepper DA, Brinkley BR (1977) Localization of tubulin in the mitotic apparatus by immunofluorescence and immunoelectron microscopy. Chromosoma 60:223–235

    Google Scholar 

  • Peterson JB, Ris H (1976) Electron-microscopic study of the spindle and chromosome movement in the yeast Saccharomyces cerevisiae. J Cell Sci 22:219–242

    Google Scholar 

  • Pimpinelli S, Santini G, Gatti M (1976) Characterization of Drosophila heterochromatin. C- and N-banding. Chromosoma 57:377–386

    Google Scholar 

  • Piza S de Toledo (1943) Meiosis in the male of the brazilian scorpion Tityus bahiensis. Rev Agric 18 (7–8): 249–276

    Google Scholar 

  • Rieder CL (1982) The formation, structure, and composition of the mammalian kinetochore and kinetochore fiber. Int Rev Cytol 79:1–58

    Google Scholar 

  • Ris H, Kubai D (1970) Chromosome structure. Annu Rev Genet 4:263–294

    Google Scholar 

  • Roth ER (1979) Satellite DNA properties of the germ-line limited DNA and the organization of somatic genomes in the nematodes Ascaris suum and Parascaris equorum. Chromosoma 74:355–371

    Google Scholar 

  • Rufas JS, Gimenénezm-Martín (1986) Ultrastructure of the kinetochore in Graphosoma italicum. Protoplasma 132:142–148

    Google Scholar 

  • Triantaphyllou AC (1971) Genetics and cytology. In: Zuckerman BM, Mae WF, Rhode RA (eds) Plant parasitic nematodes, vol 2. Academic Press, New York, pp 1–34

    Google Scholar 

  • White MS (1973) Animal cytology and evolution. (3rd ed) Cambridge University Press, Cambridge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goday, C., Pimpinelli, S. Centromere organization in meiotic chromosomes of Parascaris univalens . Chromosoma 98, 160–166 (1989). https://doi.org/10.1007/BF00329679

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00329679

Keywords

Navigation