Skip to main content
Log in

Post-orogenic shoshonitic magmas of the Yzerfontein pluton, South Africa: the ‘smoking gun’ of mantle melting and crustal growth during Cape granite genesis?

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

An Erratum to this article was published on 14 September 2017

This article has been updated

Abstract

The post-orogenic Yzerfontein pluton, in the Saldania Belt of South Africa was constructed through numerous injections of shoshonitic magmas. Most magma compositions are adequately modelled as products of fractionation, but the monzogranites and syenogranites may have a separate origin. A separate high-Mg mafic series has a less radiogenic mantle source. Fine-grained magmatic enclaves in the intermediate shoshonitic rocks are autoliths. The pluton was emplaced between 533 ± 3 and 537 ± 3 Ma (LA-SF-ICP-MS U–Pb zircon), essentially synchronously with many granitic magmas of the Cape Granite Suite (CGS). Yzerfontein may represent a high-level expression of the mantle heat source that initiated partial melting of the local crust and produced the CGS granitic magmas, late in the Saldanian Orogeny. However, magma mixing is not evident at emplacement level and there are no magmatic kinships with the I-type granitic rocks of the CGS. The mantle wedge is inferred to have been enriched during subduction along the active continental margin. In the late- to post-orogenic phase, the enriched mantle partially melted to produce heterogeneous magma batches, exemplified by those that formed the Yzerfontein pluton, which was further hybridised through minor assimilation of crustal materials. Like Yzerfontein, the small volumes of mafic rocks associated with many batholiths, worldwide, are probably also low-volume, high-level expressions of crustal growth through the emplacement of major amounts of mafic magma into the deep crust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Change history

  • 14 September 2017

    Erratum to: Contrib Mineral Petrol (2017) 172:72 DOI 10.1007/s00410-017-1390-9.

References

  • Armstrong R, De Wit J, Reid D, York D, Zartman R (1998) Cape town's table mountain reveals rapid Pan-African uplift of its basement rocks. J African Earth Sci 27(1A):10–11

    Google Scholar 

  • Belcher RW, Kisters A (2003) Lithostratigraphic correlations in the western branch of the Pan-African Saldania belt, South Africa: the Malmesbury Group revisited. S Afr J Geol 106(4):327–342. doi:10.2113/106.4.327

    Article  Google Scholar 

  • Bierlein FP, Arne DC, Keay SM, McNaughton NJ (2001) Timing relationships between felsic magmatism and mineralisation in the central Victorian gold province, southeast Australia. Aust J Earth Sci 48:883–899

    Article  Google Scholar 

  • Chemale EJ, Scheepers R, Gresse PG, van Schmus WR (2011) Geochronology and sources of late Neoproterozoic to Cambrian granites of the Saldania Belt. Int J Earth Sci 100:431–444. doi:10.1007/s00531-010-0579-1

    Article  Google Scholar 

  • Clemens JD (1990) The granulite – granite connexion. In: Vielzeuf D, Vidal P (eds) Granulites and crustal differentiation. Kluwer Academic Publishers, Dordrecht, pp 25–36

    Chapter  Google Scholar 

  • Clemens JD (2006) Melting of the continental crust: fluid regimes, melting reactions and source-rock fertility. In: Rushmer T, Brown M (eds) Evolution and differentiation of the continental crust. Cambridge University Press, Cambridge, pp 297–331

    Google Scholar 

  • Clemens JD (2012) Granitic magmatism, from source to emplacement: a personal view. Appl Earth Sci 121(3):107–136. doi:10.1179/1743275813Y.0000000023

    Article  Google Scholar 

  • Clemens JD, Phillips GN (2014) Inferring a deep-crustal source terrane from a high-level granitic pluton: the Strathbogie Batholith, Australia. Contrib Miner Petrol 168(5). doi:10.1007/s00410-014-1070-y

  • Clemens JD, Stevens G (2012) What controls chemical variation in granitic magmas? Lithos 134–135:317–329. doi:10.1016/j.lithos.2012.01.001

    Article  Google Scholar 

  • Clemens JD, Stevens G (2016) The Saldanha Bay Caldera Complex: clarifying the Cambrian geology of the Postberg—Saldanha area of the West Coast, South Africa. S Afr J Geol 119(2):347–358. doi:10.2113/gssajg.119.2.347

    Article  Google Scholar 

  • Clemens JD, Regmi K, Nicholls IA, Weinberg R, Maas R (2016) The Tynong pluton, its mafic synplutonic sheets and igneous microgranular enclaves: the nature of the mantle connection in I-type granitic magmas. Contrib. Mineral. Petrol. 171(4):1–17. doi:10.1007/s00410-016-1251-y

    Article  Google Scholar 

  • Clemens JD, Stevens G, Elburg MA (2017) Petrogenetic processes in granitic magmas and their igneous microgranular enclaves from Central Victoria, Australia: match or mismatch? Trans R Soc S Afr 72(1):6–32. doi:10.1080/0035919X.2016.1209702

    Article  Google Scholar 

  • Da Silva LC, Gresse PG, Scheepers R, McNaughton NJ, Hartmann LA, Fletcher I (2000) U–Pb SHRIMP and Sm-Nd age constraints on the timing and sources of the Pan-African Cape Granite Suite, South Africa. J Afr Earth Sci 30(4):795–815

    Article  Google Scholar 

  • Dorais M, Whitney JA, Roden MF (1990) Origin of mafic enclaves in the Dinkey Creek pluton, central Sierra Nevada Batholith, California. J Petrol 31:853–881. doi:10.1093/petrology/31.4.853

    Article  Google Scholar 

  • Dudás FÖ (2012) Geochemistry of igneous rocks from the Crazy Mountains, Montana, and tectonic models for the Montana Alkalic Province. J Geophys Res Solid Earth 96(B8):13261–13277. doi:10.1029/91JB00246

    Article  Google Scholar 

  • Elburg MA, Nicholls IA (1995) Origin of microgranitoid enclaves in the S-type Wilsons Promontory batholith, Victoria—evidence for magma mingling. Aust J Earth Sci 42:423–435. doi:10.1080/08120099508728212

    Article  Google Scholar 

  • Enggist A, Luth RW (2016) Phase relations of phlogopite and pyroxene with magnesite from 4 to 8 GPa: KCMAS–H2O and KCMAS–H2O–CO2. Contrib Miner Petrol 171:88. doi:10.1007/s00410-016-1304-2

    Article  Google Scholar 

  • Frimmel HE, Basei MAS, Correa VX, Mbangula N (2013) A new lithostratigraphic subdivision and geodynamic model for the Pan-African western Saldania Belt, South Africa. Precambrian Res 231:218–235. doi:10.1016/j.precamres.2013.03.014

    Article  Google Scholar 

  • Glazner AF, Coleman DS, Mills RD (2015) The volcanic-plutonic connection. In: Breitkreuz C, Rocchi S (eds) Advances in volcanology. Springer, Berlin, pp 1–22

    Google Scholar 

  • Goscombe BD, Gray DR (2008) Structure and strain variation at mid-crustal levels in a transpressional orogen: a review of the Kaoko Belt structure and the character of West Gondwana amalgamation and dispersal. Gondwana Res 13(1):45–85. doi:10.1016/j.gr.2007.07.002

    Article  Google Scholar 

  • Goscombe BD, Hand M, Gray D (2003) Structure of the Kaoko Belt, Namibia: progressive evolution of a classic transpressional orogen. J Struct Geol 25(7):1049–1081. doi:10.1016/S0191-8141(02)00150-5

    Article  Google Scholar 

  • Gresse PG, von Veh MW, Frimmel HE (2006) Namibian (Neoproterozoic) to early Cambrian Successions. In: Johnson MR, Anhaeusser CR, Thomas RJ (eds) The geology of South Africa, vol. Geological Society of South Africa/Council for Geoscience, Johannesburg/Pretoria, pp 395–420

  • Griffin WL, Wang X, Jackson SE, Pearson NJ, O’Reilly SY, Xu X, Zhou X (2002) Zircon chemistry and magma mixing, SE China: in situ analysis of Hf isotopes.Tonglu and Pingtan igneous complexes. Lithos 61(3–4):237–269. doi:10.1016/S0024-4937(02)00082-8

    Article  Google Scholar 

  • Harris C, Vogeli J (2010) Oxygen isotope composition of garnet in the Peninsula granite, Cape Granite Suite, South Africa: constraints on melting and emplacement mechanisms. S Afr J Geol 113(4):401–412. doi:10.2113/gssajg.113.4.401

    Article  Google Scholar 

  • Hartnady CJH, Newton AR, Theron JN (1974) The stratigraphy and structure of the Malmesbury Group in the southwestern Cape. Bull Univ Cape Town Precam Res Unit 15:193–213

    Google Scholar 

  • Hugo D (2011) Petrological investigation of the Yzerfontein layered mafic complex, West Coast, South Africa. BSc (Hons) thesis (unpubl.), Department of Earth Sciences, University of Stellenbosch

  • Jordaan LJ (1990) The geology and geochemistry of mafic and intermediate igneous rocks associated with the Cape granites. MSc thesis (unpubl.), Department of Geology, University of Stellenbosch, p 243

  • Jordaan LJ, Scheepers R, Barton ES (1995) The geochemistry and isotopic composition of the mafic and intermediate components of the Cape Granite Suite, South Africa. J Afr Earth Sci 21(1):59–70. doi:10.1016/0899-5362(95)00075-5

    Article  Google Scholar 

  • Kisters AFM, Belcher RW (2017) The stratigraphy and structure of the western Saldania Belt, South Africa. In: Basei M, Oyhantcabal P, Siegesmund S (eds) Geology of SW Gondwana. Springer, New York (in press)

    Google Scholar 

  • Kisters AFM, Belcher RW, Armstrong RA, Scheepers R, Rozendaal A, Jordaan LS (2002) Timing and kinematics of the Colenso Fault; The Early Paleozoic shift from collisional to extensional tectonics in the Pan-African Saldania Belt, South Africa. S Afr J Geol 105(3):257–270. doi:10.2113/1050257

    Article  Google Scholar 

  • Kisters AFM, Agenbach C, Frei D (2015) Age and tectonic significance of the volcanic Bloubergstrand member in the Pan-african Saldania Belt, South Africa. S Afr J Geol 18(3):213–224. doi:10.2113/gssajg.118.3.213

    Article  Google Scholar 

  • Le Bas MJ, Streckeisen AL (1991) The IUGS systematics of igneous rocks. J Geol Soc Lond 148:825–833

    Article  Google Scholar 

  • Le Maitre RW, Streckeisen A, Zanettin B, Le Bas MJ, Bonin B, Bateman P, Belleni G, Dudek A, Efremova S, Keller J, Lamere J, Sabine PA, Schmid R, Sorensen H, Wolley AR (2002) Igneous rocks: a classification and glossary of terms, recommendations of the international union of geological sciences, subcommission of the systematics of igneous rocks. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Maske S (1957) The diorites of Yzerfontein, Darling, Cape Province. Annals Univ. Stellenbosch 33(Section A, 1-11): 3–68

  • Middlemost EAK (1994) Naming materials in the magma igneous rock system. Earth-Sci Rev 37(3–4):215–224. doi:10.1016/0012-8252(94)90029-9

    Article  Google Scholar 

  • Pearce JA, Cann JR (1973) Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth Planet Sci Lett 19(2):290–300. doi:10.1016/0012-821X(73)90129-5

    Article  Google Scholar 

  • Pin C (1990) Evolution of the lower crust in the Ivrea Zone: a model based on isotopic and geochemical data. In: Vielzeuf D, Vidal P (eds) Granulites and crustal evolution. Kluwer Academic Publishers, Dordrecht, pp 87–110

    Chapter  Google Scholar 

  • Pitcher WS (1997) The nature and origin of granite. Chapman & Hall, London, p 387

    Book  Google Scholar 

  • Rosenbaum G, Li P, Rubatto D (2012) The contorted New England Orogen (eastern Australia): New evidence from U–Pb geochronology of early Permian granitoids. Tectonics 31: TC1006, doi: 10.1029/2011TC002960

  • Rotenberg E, Davis DW, Amelin Y, Ghosh S, Bergquist BA (2012) Determination of the decay constant of 87Rb by laboratory accumulation of 87Sr. Geochim Cosmochim Acta 85:41–57

    Article  Google Scholar 

  • Rudnick R (1990) Continental crust—growing from below. Nature 347:711–712

    Article  Google Scholar 

  • SACS (South African Committee for Stratigraphy) (1980) Stratigraphy of South Africa. Part 1. In: Kent LE (ed) Lithostratigraphy of the Republic of South Africa, SW Africa/Namibia, and the Republics of Bophuthatswana, Transkei and Venda, vol 8. Handbook of the Geological Survey of South Africa

  • Sambridge MS, Compston W (1994) Mixture modelling of multi-component data sets with application to ion-probe zircon ages. Earth Planet Sci Lett 128(3):373–390. doi:10.1016/0012-821X(94)90157-0

    Article  Google Scholar 

  • Scheepers R (1995) Geology, geochemistry and petrogenesis of Late Precambrian S-, I- and A-type granitoids in the Saldania belt, Western Cape Province South Africa. J Afr Earth Sci 21:35–58. doi:10.1016/0899-5362(95)00087-A

    Article  Google Scholar 

  • Scheepers R, Armstrong R (2002) New U–Pb SHRIMP zircon ages of the Cape Granite Suite: implications for the magmatic evolution of the Saldania Belt. S Afr J Geol 105(3):241–256. doi:10.2113/1050241

    Article  Google Scholar 

  • Scheepers R, Nortjé AN (2000) Rhyolitic ignimbrites of the Cape Granite suite, southwestern Cape province, South Africa. J Afr Earth Sc 31(3):647–656

    Article  Google Scholar 

  • Scheepers R, Poujol M (2002) U–Pb zircon age of Cape Granite Suite ignimbrites: characteristics of the last phases of the Saldanian magmatism. S Afr J Geol 105(2):163–178. doi:10.2113/105.2.163

    Article  Google Scholar 

  • Scheepers R, Schoch AE (2006) The Cape Granite Suite. In: Johnson MR, Anhaeusser CR, Thomas RJ (eds) The geology of South Africa, vol. Geological Society of South Africa/Council for Geoscience, Johannesburg/Pretoria, pp 421–432

  • Słaby E, Martin H (2008) Mafic and felsic magma interaction in granites: the Hercynian Karkonosze pluton (Sudetes, Bohemian Massif). J Petrol 49(2):353–391. doi:10.1093/petrology/egm085

    Google Scholar 

  • Stevens G, Villaros A, Moyen J-F (2007) Selective peritectic garnet entrainment as the origin of geochemical diversity in S-type granites. Geology 35(1):9–12. doi:10.1130/g22959a.1

    Article  Google Scholar 

  • Thompson AB (1990) Heat, fluids and melting in the granulite facies. In: Vielzeuf D, Vidal P (eds) Granulites and crustal differentiation. Kluwer Academic Publishers, Dordrecht, pp 37–58

    Chapter  Google Scholar 

  • Vernon RH (1984) Microgranitoid enclaves in granites—globules of hybrid magma quenched in a plutonic environment. Nature 309:438–439

    Article  Google Scholar 

  • Vielzeuf D, Clemens JD, Pin C, Moinet E (1990) Granites, granulites and crustal differentiation. In: Vielzeuf D, Vidal P (eds) granulites and crustal differentiation. Kluwer Academic Publishers, Dordrecht, pp 59–86

    Chapter  Google Scholar 

  • Villaros A (2010) Petrogenesis of S-type Granite with Particular Emphasis on Source Processes: The Example of the S-type Granite of the Cape Granite Suite. PhD thesis (unpubl.), Department of Earth Sciences, University of Stellenbosch, Stellenbosch, p 225

  • Villaros A, Stevens G, Buick IS (2009) Tracking S-type granite from source to emplacement: clues from garnet in the Cape Granite Suite. Lithos 112(3–4):217–235. doi:10.1016/j.lithos.2009.02.011

    Article  Google Scholar 

  • Villaros A, Buick IS, Stevens G (2012) Isotopic variations in S-type granites: an inheritance from a heterogeneous source? Contrib Miner Petrol 163(2):243–257. doi:10.1007/s00410-011-0673-9

    Article  Google Scholar 

  • Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59(7):1217–1239. doi:10.1016/0016-7037(95)00038-2

    Article  Google Scholar 

  • White AJR, Chappell BW (1977) Ultrametamorphism and granitoid genesis. Tectonophysics 43:7–22

    Article  Google Scholar 

  • Wyllie PJ, Sekine T (1982) The formation of mantle phlogopite in subduction zone hybridization. Contrib Miner Petrol 79(4):375–380. doi:10.1007/BF01132067

    Article  Google Scholar 

Download references

Acknowledgements

JDC and ISB acknowledge support from the NRF programme of Incentive Funds for Rated Researchers. David Bruce (University of Adelaide) undertook the additional bulk-rock Nd isotope analyses of Malmesbury Group metasedimentary rocks. Mr D. Hugo collected several the new rock samples described here, as part of his BSc honours project at the University of Stellenbosch, in 2011. His original sample-numbering ‘system’ kept us ‘entertained’ for a considerable period. Cumulate hornblendite sample 822B is from the University of Stellenbosch collection and was sampled, by Prof. Aylva Schoch, from an alteration-free zone in the gabbroic sector of the pluton. We acknowledge the valuable advice on tectonic settings provided by Prof. Alex Kisters. The comments and suggestions of Christian Pin and another (anonymous) referee allowed us to considerably sharpen some of our arguments and to clarify a number of concepts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Clemens.

Additional information

Communicated by Franck Poitrasson.

An erratum to this article is available at https://doi.org/10.1007/s00410-017-1402-9.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clemens, J.D., Buick, I.S., Frei, D. et al. Post-orogenic shoshonitic magmas of the Yzerfontein pluton, South Africa: the ‘smoking gun’ of mantle melting and crustal growth during Cape granite genesis?. Contrib Mineral Petrol 172, 72 (2017). https://doi.org/10.1007/s00410-017-1390-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-017-1390-9

Keywords

Navigation