Skip to main content

Heat, Fluids, and Melting in the Granulite Facies

  • Chapter
Granulites and Crustal Evolution

Part of the book series: NATO ASI Series ((ASIC,volume 311))

Abstract

Various geothermobarometric studies have yielded temperatures of 650°C to > 1000°C, and pressures of 3 to > 18kbar, for equilibration of granulite facies assemblages. This range of values, and their uncertainties, probably reflect diffusion closure rather than simply formation conditions. Geohygrometry and phase equilibria, together with fluid inclusion studies, have revealed a wide range of fluid involvement in granulite facies metamorphism from fluid-absent to H2O- or CO2-rich. A major penological problem is to distinguish those granulites which escaped partial melting, even at the above P-T conditions which mostly lie above the H2O-saturated solidus for a wide range of likely lower continental rock types.

Recent thermal modelling, which includes latent heat of melting, has indicated which tectonic events that change crustal thickness can achieve granulite facies P-T conditions even without the involvement of fluids or magmas from the mantle. Clockwise PTt paths for granulites can result from crustal thickening followed by erosional or extensional thinning. Counterclockwise PTt paths can result from thinning followed by collision thickening, perhaps in quite separate orogenies. Regional granulite terrains will not reach the surface by erosional or extensional thinning after a single collision thickening event involving continental crust of “normal” thickness. Slices of granulite facies rocks can be exhumed by collision thickening of previously thinned continental crust. Many regional granulite terrains probably reflect multicycle collision histories, and most granulite terrains become exposed tectonically.

Continental thickening which doubles a 35km continental crust with a “normal” geotherm can result in decompression dehydration-melting of metasediments (~850°C at 50km), but not of basaltic amphibolites. The latter can undergo dehydration-melting only if the basal heat-supply is increased by 50%. Amphibolites produced from more magmatically-evolved mantle-derived magmas could produce tonalitic melts in a wide variety of tectonic settings.

Rheological conditions in the lithosphere appear to be just as important for granulite emplacement, as they are for granites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, J. L., Barth, A. P. and Young, E. D. (1988). Mid-crustal Cretaceous roots of Cordilleran metamorphic core complexes. Geology. 16: 366–369.

    Article  Google Scholar 

  • Ashworth, J. R. (1985). Migmatites. Blackie and Son, Glasgow: 302 pp.

    Google Scholar 

  • Bell, R. E., Karner, G. D. and Sleekier, M. S. (1988). Early mesozoic rift basins of eastern north America and their gravity anomalies: The role of detachments during extension. Tectonics. 7 (3): 447–462.

    Article  Google Scholar 

  • Bird, P. (1979). Continental delamination and the Colorado Plateau. J. Geophys. Res. 84: 7561–7571.

    Google Scholar 

  • Brown, G. C. and Fyfe, W. S. (1972). The Transition from Metamorphism to Melting: Status of the Granulite and Eclogite Facies. 24th IGC, Montreal. 2: 27–34.

    Google Scholar 

  • Brown, M. and Earle, M. M. (1983). Cordierite-bearing schists and gneisses from Timor, eastern Indonesia: P-T conditions of metamorphism and tectonic implications. J. Metam. Geol. 1: 183–203.

    Article  Google Scholar 

  • Burnham, C. W. (1967). Hydrothermal fluids in the magmatic stage; In: Geochemistry of hydrothermal ore deposits, H. L. Barnes (ed.), Holt, Reinhart and Winston, New York,38–76

    Google Scholar 

  • Burnham, C. W. (1979). Magmas and hydrothermal fluids; In: Geochemistry of hydrothermal ore deposits, H. L. Barnes (ed.), 2nd ed. Wiley Interscience, New York,71–136

    Google Scholar 

  • Cann, J. R. (1970). Upward movement of granitic magma. Geol. Mag. 107: 335–340.

    Article  Google Scholar 

  • Chamberlain, C. P. and England, P. C. (1985). The Acadian Thermal History of the Merrimack Synclinorium in New Hampshire. J. Geol. 93: 593–602.

    Article  Google Scholar 

  • Chapman, D. S. (1986). Thermal gradients in the continental crust; In: The Nature of the Lower Continental Crust, J. B. Dawson, D. A. Carswell, J. Hall and K. H. Wedepohl (ed.), Geological Society, London, 63–70.

    Google Scholar 

  • Clemens, J. D. (1990). The granulite-granite connexion; In: Granulites and crustal evolution, D. Vielzeuf and Ph. Vidal (eds), NATO ASI Series, Kluwer.

    Google Scholar 

  • Clemens, J. D. and Vielzeuf, D. (1987). Constraints on melting and magma production in the crust. Earth Planet. Sci. Lett. 86: 287–306.

    Article  Google Scholar 

  • Coney, P. J. and Harms, T. A. (1984). Cordilleran metamorphic core complexes: Cenozoic extensional relics of Mesozoic compression. Geology. 12: 550–554.

    Article  Google Scholar 

  • Connolly, J. A. D. and Thompson, A. B. (1989a). Crustal anatexis in orogenic belts. Terra abstracts. 1 (1): 178.

    Google Scholar 

  • Connolly, J. A. D. and Thompson, A. B. (1989b). Fluid and enthalpy production during regional metamorphism. Contrib. Mineral. Petrol. 102: 347–366.

    Article  Google Scholar 

  • Dewey, J. F. (1986). Diversity in the lower continental crust; In: The Nature of the Lower Continental Crust, J. B. Dawson, D. A. Carswell, J. Hall and K. H. Wedepohl (ed.), Geological Society, London, 71–78.

    Google Scholar 

  • Dunbar, J. A. and Sawyer, D. S. (1988). Continental rifting at pre-existing lithospheric weakness. Nature. 333: 450–452.

    Article  Google Scholar 

  • Eggler, D. H. and Kadik, A. A. (1979). The system NaAlSi3O8 - H2O - CO2 to 20 kbar pressure: I. Compositional and thermodynamic relations of liquids and vapors coexisting with albite. Am. Mineral. 64: 1036–1048.

    Google Scholar 

  • Ellis, D. J. (1987). Origin and evolution of granulites in normal and thickened crusts. Geology. 15: 167–170.

    Article  Google Scholar 

  • Ellis, D. J. and Thompson, A. B. (1986). Subsolidus and Partial Melting Reactions in the Quartz-excess CaO + MgO + Al2O3 + SiO2 + H2O System under Water-excess and Water-deficient Conditions to 10 kbar: Some implications for the Origin of Peraluminous Melts from Mafic Rocks. J. Petrol. 27 (1): 91–121.

    Google Scholar 

  • England, P. C. (1987). Diffuse continental deformation: length scales, rates and metamorphic evolution. Phil Trans. R. Soc. Lond. A 321: 3–22.

    Article  Google Scholar 

  • England, P. and Bickle, M. (1984). Continental thermal and tectonic regimes during the Archaean. J. Geol. 92 (4): 353–367.

    Article  Google Scholar 

  • England, P. C. and Thompson, A. B. (1984). Pressure-Temperature-Time Paths of Regional Metamorphism I. Heat Transfer during the Evolution of Regions of Thickened Continental Crust. J. Petrol. 25 (4): 894–928.

    Google Scholar 

  • England, P. C. and Thompson, A. B. (1986). Some thermal and tectonic models for crustal melting in continental collision belts; In: Collision Tectonics, M. P. Coward and A. C. Ries (ed.), Geological Society, London, 83–94

    Google Scholar 

  • Frost, B. R. and Chacko, T. (1989). The granulite uncertainty principle: limitations on thermobarometry in granulites. J. Geol.: 97: 435–450.

    Article  Google Scholar 

  • Frost, B. R. and Frost, C. D. (1987). CO2, melt and granulite metamorphism. Nature. 327: 503–506.

    Article  Google Scholar 

  • Fyfe, W. S., Price, N. J. and Thompson, A. B. (1978). Fluids in the Earth’s Crust. Elsevier, Amsterdam: 383 pp.

    Google Scholar 

  • Gasparik, T. (1987). Orthopyroxene thermobarometry in simple and complex systems. Contrib. Mineral Petrol. 96: 357–370.

    Article  Google Scholar 

  • Grant, J. A. (1985a). Phase equilibria in low-pressure partial melting of pelitic rocks. Am. J. Sci. 285: 409–435.

    Article  Google Scholar 

  • Grant, J. A. (1985b). Phase equilibria in partial melting of pelitic rocks; In: Migmatites, J. R. Ashworth (ed.), Blackie and Son, Glasgow, 86–144.

    Google Scholar 

  • Green, D. H. and Ringwood, A. E. (1967). An experimental investigation of the gabbro to eclogite transformation and its petrological applications. Geochim. Cosmochim. Acta. 31: 767–833.

    Article  Google Scholar 

  • Griffin, W. L. and O’Reilly, S. Y. (1987). Is the continental Moho the crust-mantle boundary? Geology. 15: 241–244.

    Article  Google Scholar 

  • Harley, S. L. (1989). The origins of granulites: A metamorphic perspective. Geol. Mag.: 126: 215–247.

    Article  Google Scholar 

  • Harris, P. G., Kennedy, W. Q. and Scarfe, C. M. (1970). Volcanism versus plutonism — the effect of chemical composition; In: Mechanism of Igneous Intrusions, G. Newall and N. Rast (eds), Geol. J., 187–200

    Google Scholar 

  • Helz, R. T. (1976). Phase relations of basalts in their melting ranges at PH2O = 5 kbar. Part I. Melt Compositions. J. Petrology. 17 (2): 139–193.

    Google Scholar 

  • Holloway, J. R. (1976). Fluids in the evolution of granitic magmas: Consequences of finite CO2 solubility. Bull. Geol. Soc. Amer. 87: 1513–1518.

    Article  Google Scholar 

  • Houseman, G. A. and McKenzie, D. P. (1981). Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts. J. Geophys. Res. 86 (B7): 6115–6132.

    Article  Google Scholar 

  • Huang, W. L. and Wyllie, P. J. (1973). Melting relation of muscovite-granite to 35 kbar as a model for fusion of metamorphosed subducted oceanic sediments. Contrib. Mineral. Petrol. 42: 1–14.

    Article  Google Scholar 

  • Ito, K. and Kennedy, G. C. (1971). An experimental study of the basalt-garnet granulite-eclogite transition; In: The structure and physical properties of the Earth’s Crust, J. G. Heacock (ed.), American Geophysical Union, 303–314

    Chapter  Google Scholar 

  • Kadik, A. A., Lukanin, O. A., Lededev, Y. B. and Korovushkina, E. Y. (1972). Solubility of H2O and CO2 in granite and basalt melts at high pressures. Geokhimiya. 12: 1549–1560.

    Google Scholar 

  • Keen, C. E. (1987). Some important consequences of lithosphere extension; In: Continental Extensional Tectonics, M. P. Coward, J. F. Dewey and P. L. Hancock (ed.), Geological Society, London, 67–73.

    Google Scholar 

  • Kerrick, D. M. (1972). Experimental determination of muscovite + quartz stability with PH2O < Ptotal. Am. J. Sci. 272: 946–958.

    Article  Google Scholar 

  • Koons, P. O. and Thompson, A. B. (1985). Non-mafic rocks in the greenschist, blueschist and eclogite fades. Chem. Geol. 50: 3–30.

    Article  Google Scholar 

  • Le Breton, N. and Thompson, A. B. (1988). Fluid-absent (dehydration) melting of biotite in metapelites in the early stage of crustal anatexis. Contrib. Mineral. Petrol. 99: 226–237.

    Article  Google Scholar 

  • Luth, W. C. (1976). Granitic rocks; In: The Evolution of the Crystalline Rocks, D. K. Bailey and R. MacDonald (ed.), Academic Press, London,

    Google Scholar 

  • McKenzie, D. P. (1978). Some remarks on the development of sedimentary basins. Earth. Planet. Sci. Lett. 48: 25–32.

    Article  Google Scholar 

  • Milhollen, G. L., Wyllie, P. J. and Burnham, C. W. (1971). Melting relations of NaAlSi3O8 to 30 Kb in the presence of H2O:CO2 = 50:50 vapour. Am. J. Sci. 271: 473–480.

    Article  Google Scholar 

  • Murrell, S. A. F. (1986). Mechanics of tectogenesis in plate collision zones; In: Collision Tectonics, M. P. Coward and A. C. Ries (ed.), Geological Society, London, 95–114

    Google Scholar 

  • Oxburgh, E. R. and Parmentier, E. M. (1978). Thermal processes in the formation of continental lithosphere. Phil. Trans. R. Soc. Lond. A 288: 415–429.

    Google Scholar 

  • Park, R. G. and Tarney, J. (1987). Evolution of the Lewisian and Comparable Precambrian High Grade Terrains. Geological Society, London: 315 pp.

    Google Scholar 

  • Percival, J. A. (1983). High-grade metamorphism in the Chapleau-Foleyet Area, Ontario. Am. Mineral. 68: 667–686.

    Google Scholar 

  • Powell, C. M. (1986). Continental underplating model for the rise of the Tibetan Plateau. Earth Planet. Sci. Lett. 81: 79–94.

    Article  Google Scholar 

  • Powell, R. (1983a). Fluids and melting under upper-amphibolitic facies conditions. J. Geol. Soc. Lond. 140: 629–633.

    Article  Google Scholar 

  • Powell, R. (1983b). Processes in granulite-facies metamorphism; In: Migmatites, Melting and Metamorphism, M. P. Atherton and C. D. Gribble (ed.), Shiva, Nantwich, 127–139.

    Google Scholar 

  • Richardson, S. W., Gilbert, M. C. and Bell, P. M. (1969). Experimental determination of kyanite-andalusite and andalusite-sillimanite equilibria; The aluminum silicate triple point. Am. J. Sci. 267: 259–272.

    Article  Google Scholar 

  • Robinson, P. R., Hollocher, K., Tracy, R. J. and Dietsch, C. W. (1982). High grade Acadian regional metamorphism in south-central Massachusetts; In: Guidebook for fieldtrips in Connecticut and south-central Massachusetts, R. Joesten and S. Quarrier (eds), New England Intercollegiate Geological Conference, 341–373.

    Google Scholar 

  • Rushmer, T. (1987). Fluid-absent melting of amphibolite — experimental results at 8 kbar. Terra Cognita. 7: 286.

    Google Scholar 

  • Rushmer, T. (1989). Granulites as residues of partial melting: experimental constraints. Terra abstracts. 1 (1): 302.

    Google Scholar 

  • Sandiford, M. and Powell, R. (1986). Deep crustal metamorphism during continental extension: modern and ancient examples. Earth Planet. Sci. Lett. 79: 151–158.

    Article  Google Scholar 

  • Schmid, R. (1972). Substitution von Biotit durch Granat und “Regranitisation” in granulitischen Paragneissen der Ivreazone (N-Italien). Habilitations, ETH Zürich.

    Google Scholar 

  • Sclater, J. G., Jaupart, C. and Galson, D. (1980). Heat flow through oceanic and continental crust, and heat loss of the earth. Rev. Geophys. Space Phys. 81: 269–312.

    Article  Google Scholar 

  • Selverstone, J. and Chamberlain, C. P. (1989). Apparent isobaric cooling paths from granulites: Counterexamples from British Columbia and New Hampshire. Geology.: (in press).

    Google Scholar 

  • Selverstone, J. and Hollister, L. S. (1980). Cordierite-bearing granulites from the Coast Range. British Columbia: P-T conditions of metamorphism. Can. Mineral. 18: 119–129.

    Google Scholar 

  • Sykes, M. L. and Holloway, J. R. (1987). Evolution of granitic magmas during ascent: A phase equilibrium model; In: Magmatic Processes: Physicochemical Principles, B. O. Mysen (ed.), The Geochemical Society, 447–461

    Google Scholar 

  • Thompson, A. B. (1974). Calculation of muscovite-paragonite alkali feldspar phase relations. Contrib. Mineral. Petrol. 44: 173–194.

    Article  Google Scholar 

  • Thompson, A. B. (1982). Dehydration melting of pelitic rocks and the generation of H2O-undersaturated granitic liquids. Am. J. Sci. 282: 1567–1595.

    Article  Google Scholar 

  • Thompson, A. B. (1988). Dehydration melting of crustal rocks. Rendiconti della Societa Italiana di Mineralogia e Petrologia. 43: 41–60.

    Google Scholar 

  • Thompson, A. B. and England, P. C. (1984). Pressure-Temperature-Time Paths of Regional Metamorphism II. Their Inference and Interpretation using Mineral Assemblages in Metamorphic Rocks. J. Petrol 25(4): 929–955.

    Google Scholar 

  • Thompson, A. B. and Ridley, J. R. (1987). Pressure-temperature-time (P-T-t) histories of orogenic belts. Phil. Trans. R. Soc. Lond. A 321: 27–45.

    Google Scholar 

  • Thompson, A. B. and Tracy, R. J. (1979). Model Systems for Anatexis of Pelitic Rocks. Contrib. Mineral. Petrol. 70: 429–438.

    Article  Google Scholar 

  • Thompson, P. H. (1989). Moderate overthickening of thinned sialic crust and the origin of granitic magmatism and regional metamorphism in low P-high T terranes. Geology.: 17: 520–523.

    Article  Google Scholar 

  • Tracy, R. J. and Day, H. W. (1988). Studies in the genesis and deformation of migmatites: introduction. J. Metam. Geol. 6(4): 385–386.

    Article  Google Scholar 

  • Vielzeuf, D. and Holloway, J. R. (1988). Experimental determination of the fluid-absent melting relations in the perlitic system. Consequences for crustal differentiation. Contrib. Mineral. Petrol. 98: 257–276.

    Article  Google Scholar 

  • Vielzeuf, D. and Kornprobst, J. (1984). Crustal splitting and the emplacement of Pyrenean Iherzolites and granulites. Earth. Planet. Sci. Lett. 67: 87–96.

    Article  Google Scholar 

  • Wells, P. R. A. (1980). Thermal models for the magmatic accretion and subsequent metamorphism of continental crust. Earth. Planet. Sci. Lett. 46: 253–265.

    Article  Google Scholar 

  • Wells, P. R. A. (1981). Accretian of continental crust: thermal and geochemical consequences. Phil Trans. R. Soc. Lond. A 301: 347–357.

    Article  Google Scholar 

  • Wernicke, B, Axen, G. J. and Snow, J. K. (1988). Basin and range extensional tectonics at the latitude of Las Vegas, Nevada. Bull. Geol. Soc. Am. 100, 1738–1757.

    Article  Google Scholar 

  • Wickham, S. M. (1988). Evolution of the lower crust. Nature. 333: 119–120.

    Article  Google Scholar 

  • Windley, B. F. (1981). Phanerozoic granulites. J. Geol. Soc. London. 138: 745–751.

    Article  Google Scholar 

  • Wood, B. J. (1987). Thermodynamics of multicomponent systems containing several solid solutions; In: Thermodynamic Modeling of geological Materials: Minerals, Fluids and Melts, I. S. E. Carmichael and H. P. Eugster (eds), Mineralogical Society of America, 71–95.

    Google Scholar 

  • Wyllie, P. J. (1977). Crustal Anatexis: An experimental review. Tectonophysics. 43: 41–71.

    Article  Google Scholar 

  • Yoder, H. S. and Tilley, C. E. (1962). Origin of Basalt Magmas: An Experimental Study of Natural and Synthetic Rock Systems. J. Petrol. 3(3): 342–532.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Thompson, A.B. (1990). Heat, Fluids, and Melting in the Granulite Facies. In: Vielzeuf, D., Vidal, P. (eds) Granulites and Crustal Evolution. NATO ASI Series, vol 311. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2055-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2055-2_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7422-3

  • Online ISBN: 978-94-009-2055-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics