Skip to main content
Log in

An early Paleozoic monzonorite–granite suite in the South China block: implications for the intracontinental felsic magmatism

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Large granitoid complexes within the continental crust are believed to be closely linked to mantle-derived magmas based on field observations and isotopic studies. However, details on the contribution of mantle-derived magmas in the generation of felsic magmas deep in the lower to middle crust, especially the interaction between the mantle-derived mafic magmas and the generated felsic melts, are not well constrained by petrological and mineralogical studies. Here we present a detailed study of an early Paleozoic monzonorite–granite suite from the South China Block and comparison with the other coeval magmatic rocks (~22,000km2) in the region, to provide more details on the underplating/intraplating of mantle-derived magmas and the generation of felsic magmas in intracontinental settings. It is shown that the monzonorite has signatures of both mantle-derived magmas (substantial contents of MgO, Cr, and Ni; presence of olivine and orthopyroxene) and crust-derived magmas (substantial contents of SiO2, K2O, Rb, Ba, and light rare-earth elements; presence of K-feldspar, quartz and low-calcium plagioclase). Interestingly, the monzonorite, granite and the mafic microgranular enclaves (MME) are remarkably uniform in Sr–Nd–Hf isotopic compositions, with high initial 87Sr/86Sr ratios (0.7081–0.7098), low εNd (t) values (−6.8 to −6.3) and low zircon εHf (t) values (−8.0 to −7.4). An integrated study of petrological, mineralogical, and geochemical data of the monzonorite–granite suite and coeval magmatic rocks from the same region makes it clear that the input of crustal components is essential to explain the unusual signatures of the monzonorite. Petrogenetic modelling and isotopic compositions suggest that the contribution of mantle-derived mafic magmas in the generation of crust-derived felsic magmas is represented by heat input and minor mass input, and in the meantime, we prefer to explain the unusual geochemical signatures of the monzonorite by selective contamination of crust-derived felsic melts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allen CM (1991) Local equilibrium of mafic enclaves and granitoids of the turtle pluton, Southeast California: mineral, chemical, and isotopic evidence. Am Mineral 76:574–588

    Google Scholar 

  • Andersen T, Griffin WL (2004) Lu–Hf and U–Pb isotope systematics of zircons from the Storgangen intrusion, Rogaland intrusive complex, SW Norway: implications for the composition and evolution of Precambrian lower crust in the Baltic shield. Lithos 73:271–288

    Article  Google Scholar 

  • Bender JF, Hanson GN, Bence AE (1984) Cortlandt complex; differentiation and contamination in plutons of alkali basalt affinity. Am J Sci 284:1–57

    Article  Google Scholar 

  • Bergantz GW (1989) Underplating and partial melting: implications for melt generation and extraction. Science 245:1093–1095

    Article  Google Scholar 

  • Bonin B (2004) Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review. Lithos 78:1–24

    Article  Google Scholar 

  • Bouvier A, Vervoort JD, Patchett PJ (2008) The Lu-Hf and Sm-Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet Sci Lett 273:48–57

    Article  Google Scholar 

  • Bowen NL (1928) The evolution of the igneous rocks. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Brown M (2013) Granite: from genesis to emplacement. Geol Soc Am Bull 125:1079–1113

    Article  Google Scholar 

  • Bryan S (2007) Silicic large igneous provinces. Episodes 30:20–31

    Google Scholar 

  • Bryan SE, Ferrari L (2013) Large igneous provinces and silicic large igneous provinces: progress in our understanding over the last 25 years. Geol Soc Am Bull 125:1053–1078

    Article  Google Scholar 

  • Castro A, Douce AEP, Corretgé LG, Jesús D, El-Biad M, El-Hmidi H (1999) Origin of peraluminous granites and granodiorites, Iberian massif, Spain: an experimental test of granite petrogenesis. Contrib Mineral Petrol 135:255–276

    Article  Google Scholar 

  • Castro A, Gerya TV (2008) Magmatic implications of mantle wedge plumes: experimental study. Lithos 103:138–148

    Article  Google Scholar 

  • Charvet J (2013) The Neoproterozoic-early Paleozoic tectonic evolution of the South China block: an overview. J Asian Earth Sci 74:198–209

    Article  Google Scholar 

  • Charvet J, Shu LS, Faure M, Choulet F, Wang B, Lu HF, Le Breton N (2010) Structural development of the lower Paleozoic belt of South China: genesis of an intracontinental orogen. J Asian Earth Sci 39:309–330

    Article  Google Scholar 

  • Charvet J, Shu LS, Shi YS, Guo LZ, Faure M (1996) The building of South China: collision of Yangzi and Cathaysia blocks, problems and tentative answers. J SE Asian Earth Sci 13:223–235

    Article  Google Scholar 

  • Chernyshov NM, Pereslavtsev AV (1994) The role of accumulation in forming the nickeliferous norite-diorite intrusions of the Voronezh crystalline massif. Int Geol Rev 36:587–604

    Article  Google Scholar 

  • Clemens JD (2003) S-type granitic magmas - petrogenetic issues, models and evidence. Earth-Sci Rev 61:1–18

    Article  Google Scholar 

  • Clemens JD, Stevens G (2016) Melt segregation and magma interactions during crustal melting: breaking out of the matrix. Earth Sci Rev 160:333–349

    Article  Google Scholar 

  • Demaiffe D, Javoy M (1980) 18O/16O ratios of anorthosites and related rocks from the Rogaland complex (SW Norway). Contrib Mineral Petrol 72:311–317

    Article  Google Scholar 

  • Dietz RS (1964) Sudbury structure as an astrobleme. J Geol 72:412–434

    Article  Google Scholar 

  • Dorfler KM, Caddick MJ, Tracy RJ (2015) Thermodynamic modeling of crustal melting using xenolith analogs from the Cortlandt complex, New York, USA. J Petrol 56:389–408

    Article  Google Scholar 

  • Duchesne JC, Roelandts I, Demaiffe D, Weis D (1985) Petrogenesis of monzonoritic dykes in the Egersund-Ogna anorthosite (Rogaland, Sw Norway) - trace-elements and isotopic (Sr, Pb) constraints. Contrib Mineral Petrol 90:214–225

    Article  Google Scholar 

  • Duchesne JC, Wilmart E, Demaiffe D, Hertogen J (1989) Monzonorites from Rogaland (Southwest Norway): a series of rocks coeval but not comagmatic with massif-type anorthosites. Precambrian Res 45:111–128

    Article  Google Scholar 

  • Emslie RF (1978) Anorthosite massifs, rapakivi granites, and late Proterozoic rifting of North America. Precamb Res 7:61–98

    Article  Google Scholar 

  • Ernst RE (2014) Large igneous provinces. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Ferry JM, Watson EB (2007) New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib Mineral Petrol 154:429–437

    Article  Google Scholar 

  • Gao JF, Lu JJ, Lai MY, Lin YP, Pu W (2003) Analysis of trace elements in rock sample using HROICPMS. J Nanjing Univ (Nat Sci) 39:844–850

    Google Scholar 

  • Garde AA, McDonald I, Dyck B, Keulen N (2012) Searching for giant, ancient impact structures on earth: the Mesoarchaean Maniitsoq structure, West Greenland. Earth Planet Sci Lett 337:197–210

    Article  Google Scholar 

  • Goldstein SJ, Jacobsen SB (1988) Nd and Sr isotopic systematics of river water suspended material: implications for crustal evolution. Earth Planet Sci Lett 87:249–265

    Article  Google Scholar 

  • Griffin WL, Pearson NJ, Belousova E, Jackson SE, Van Achterbergh E, O’Reilly SY, Shee SR (2000) The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim Cosmochim Acta 64:133–147

    Article  Google Scholar 

  • Griffin WL, Powell WJ, Pearson NJ, O'Reilly SY (2008) GLITTER: data reduction software for laser ablation ICP-MS. Laser Ablation-ICP-MS in the Earth Sciences Mineralogical Association of Canada Short Course Series 40:204–207

    Google Scholar 

  • Griffin WL, Wang X, Jackson SE, Pearson NJ, O'Reilly SY, Xu XS, Zhou XM (2002) Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 61:237–269

    Article  Google Scholar 

  • Guo LZ, Shi YS, Lu HF, Ma RS, Dong HG, Yang SF (1989) The pre-Devonian tectonic patterns and evolution of South China. J SE Asian Earth Sci 3:87–93

    Article  Google Scholar 

  • Hall RP, Hughes DJ (1987) Noritic dykes of southern West Greenland: early Proterozoic boninitic magmatism. Contrib Mineral Petrol 97:169–182

    Article  Google Scholar 

  • Hall RP, Hughes DJ (1990) Noritic magmatism. In: Hall RP, Hughes DJ (eds) Early Precambrian basic magmatism, vol. Blackie, London, pp 83–110

    Chapter  Google Scholar 

  • Hayden LA, Watson EB (2007) Rutile saturation in hydrous siliceous melts and its bearing on Ti-thermometry of quartz and zircon. Earth Planet Sci Lett 258:561–568

    Article  Google Scholar 

  • Hildreth W (1981) Gradients in silicic magma chambers: implications for lithospheric magmatism. J Geophys Res Sol Ea 86:10153–10192

    Article  Google Scholar 

  • Holden P, Halliday AN, Stephens WE (1987) Neodymium and strontium isotope content of microdiorite enclaves points to mantle input to granitoid production. Nature 330:53–56

    Article  Google Scholar 

  • Huang XL, Yu Y, Li J, Tong LX, Chen LL (2013) Geochronology and petrogenesis of the early Paleozoic I-type granite in the Taishan area, South China: middle-lower crustal melting during orogenic collapse. Lithos 177:268–284

    Article  Google Scholar 

  • Huppert HE, Sparks RSJ (1988) The generation of granitic magmas by intrusion of basalt into continental crust. J Petrol 29:599–624

    Article  Google Scholar 

  • Jacobsen SB, Wasserburg GJ (1980) Sm-Nd isotopic evolution of chondrites. Earth Planet Sci Lett 50:139–155

    Article  Google Scholar 

  • Jahn BM, Condie KC (1995) Evolution of the Kaapvaal Craton as viewed from geochemical and Sm-Nd isotopic analyses of intracratonic pelites. Geochim Cosmochim Acta 59:2239–2258

    Article  Google Scholar 

  • Johnston AD, Wyllie PJ (1988) Interaction of granitic and basic magmas: experimental observations on contamination processes at 10 kbar with H2O. Contrib Mineral Petrol 98:352–362

    Article  Google Scholar 

  • Kemp AIS, Hawkesworth CJ (2003) Granitic perspectives on the generation and secular evolution of the continental crust. In: Turekian HDHK (ed) Treatise on geochemistry, Pergamon, pp 349–410

  • Leake BE, Woolley AR, Arps CE, Birch WD, Gilbert MC, Grice JD, Hawthorne FC, Kato A, Kisch HJ, Krivovichev VG (1997) Nomenclature of amphiboles: report of the subcommittee on amphiboles of the international mineralogical association, commission on new minerals and Nineral names. Am Mineral 82:1019–1037

    Google Scholar 

  • Lesher CE (1990) Decoupling of chemical and isotopic exchange during magma mixing. Nature 344:235–237

    Article  Google Scholar 

  • Li XH, Li WX, Li ZX, Lo CH, Wang J, Ye MF, Yang YH (2009) Amalgamation between the Yangtze and Cathaysia blocks in South China: constraints from SHRIMP U-Pb zircon ages, geochemistry and Nd-Hf isotopes of the Shuangxiwu volcanic rocks. Precamb Res 174:117–128

    Article  Google Scholar 

  • Li ZX (1998) Tectonic history of the major east Asian lithospheric blocks since the mid-Proterozoic-a synthesis. In: Chung SL, Lo CH, Lee TY (eds) Flower MFJ. American Geophysical Union, Mantle dynamics and plate interactions in East Asia, pp 221–243

    Google Scholar 

  • Liu YS, Hu ZC, Zong KQ, Gao CG, Gao S, Xu J, Chen HH (2010) Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chin Sci Bull 55:1535–1546

    Article  Google Scholar 

  • Longhi J, Vander Auwera J, Fram MS, Duchesne JC (1999) Some phase equilibrium constraints on the origin of Proterozoic (massif) anorthosites and related rocks. J Petrol 40:339–362

    Article  Google Scholar 

  • Ludwig KR (2003) User's manual for Isoplot 3.00: a geochronological toolkit for Microsoft excel. Berkeley Geochronology Center Special Publications 4:47–93

    Google Scholar 

  • Lugmair GW, Marti K (1978) Lunar initial 143Nd/144Nd: differential evolution of the lunar crust and mantle. Earth Planet Sci Lett 39:349–357

    Article  Google Scholar 

  • Menuge JF (1988) The petrogenesis of massif anorthosites: a Nd and Sr isotopic investigation of the Proterozoic of Rogaland/Vest-Agder, SW Norway. Contrib Mineral Petrol 98:363–373

    Article  Google Scholar 

  • Minster JF, Birck JL, Allegre CJ (1982) Absolute age of formation of chondrites studied by the 87Rb-87Sr method. Nature 300:414–419

    Article  Google Scholar 

  • Patiño Douce AE (1995) Experimental generation of hybrid silicic melts by reaction of high-Al basalt with metamorphic rocks. J Geophys Res 100:15623–15639

    Article  Google Scholar 

  • Patiño Douce AE (1999) What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? Geoll Soc London Spec Publ 168:55–75

    Article  Google Scholar 

  • Peng SB, Jin ZM, Fu JM, Liu YH, He LQ, Cai MH (2006) Geochemical characteristics of basic intrusive rocks in the Yunkai uplift, Guangdong-Guangxi, China, and their tectonic significance. Geol Bull China 25:434–441

    Google Scholar 

  • Pu W, Gao JF, Zhao KD, Ling HF, Jiang SY (2005) Seperation method of Rb-Sr,Sm-Nd using DCTA and HIBA. J Nanjing Univ (Nat Sci) 41:445–450

    Google Scholar 

  • Read HH, Sadashivaiah MS, Haq BT (1965) The hypersthene-gabbro of the Insch complex, Aberdeenshire. Proc Geol Assoc 76:1–11

    Article  Google Scholar 

  • Ren JS (1990) On the geotectonics of southern China. Acta Geol Sin 64:275–288

    Google Scholar 

  • Rong JY, Chen X, Su YZ, Ni YN, Zhan RB, Chen TE, Fu LP, Li RY, Fan JX (2003) Silurian paleogeography of China. In: landing E, Johnson ME (eds) Silurian lands and seas: paleogeography outside of Laurentia. New York State Museum Bulletin 493:243–298

    Google Scholar 

  • Söderlund U, Patchett PJ, Vervoort JD, Isachsen CE (2004) The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth Planet Sci Lett 219:311–324

    Article  Google Scholar 

  • Schärer U, Wilmart E, Duchesne JC (1996) The short duration and anorogenic character of anorthosite magmatism: U Pb dating of the Rogaland complex, Norway. Earth Planet Sci Lett 139:335–350

    Article  Google Scholar 

  • Shu LS (2006) Predevonian tectonic evolution of South China: from Cathaysian block to Caledonian period folded orogenic belt. Geol J China Univ 12:418–431

    Google Scholar 

  • Smithies RH (2002) Archaean boninite-like rocks in an intracratonic setting. Earth Planet Sci Lett 197:19–34

    Article  Google Scholar 

  • Sun T (2006) A new map showing the distribution of granites in South China and its explanatory notes. Geol Bull China 25:332–335

    Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, London

    Google Scholar 

  • Valley JW, Kinny PD, Schulze DJ, Spicuzza MJ (1998) Zircon megacrysts from kimberlite: oxygen isotope variability among mantle melts. Contrib Mineral Petrol 133:1–11

    Article  Google Scholar 

  • Vervoort JD, Patchett PJ, Blichert-Toft J, Albarede F (1999) Relationships between Lu-Hf and Sm-Nd isotopic systems in the global sedimentary system. Earth Planet Sci Lett 168:79–99

    Article  Google Scholar 

  • Vervoort JD, Plank T, Prytulak J (2011) The Hf-Nd isotopic composition of marine sediments. Geochim Cosmochim Acta 75:5903–5926

    Article  Google Scholar 

  • Wang YJ, Zhang AM, Fan WM, Zhang YH, Zhang YZ (2013) Origin of paleosubduction-modified mantle for Silurian gabbro in the Cathaysia block: geochronological and geochemical evidence. Lithos 160:37–54

    Article  Google Scholar 

  • Wang YJ, Zhang FF, Fan WM, Zhang GW, Chen SY, Cawood PA, Zhang AM (2010) Tectonic setting of the South China block in the early Paleozoic: resolving intracontinental and ocean closure models from detrital zircon U-Pb geochronology. Tectonics 29

  • Watson EB, Wark DA, Thomas JB (2006) Crystallization thermometers for zircon and rutile. Contrib Mineral Petrol 151:413–433

    Article  Google Scholar 

  • Weill DF, Drake MJ (1973) Europium anomaly in plagioclase feldspar: experimental results and semiquantitative model. Science 180:1059–1060

    Article  Google Scholar 

  • Weis D, Demaiffe D (1983) Pb isotope geochemistry of a massif-type anorthositic-charnockitic body: the Hidra massif (Rogaland, SW Norway). Geochim Cosmochim Acta 47:1405–1413

    Article  Google Scholar 

  • Wiedenbeck M, Alle P, Corfu F, Griffin W, Meier M, Oberli F, Quadt A, Roddick J, Spiegel W (1995) Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostand Newslett 19:1–23

    Article  Google Scholar 

  • Wu FY, Yang YH, Xie LW, Yang JH, Xu P (2006) Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chem Geol 234:105–126

    Article  Google Scholar 

  • Wu JH, Xiang YX, Huang GR, Liu XD, Liu S (2012) Caledonian zircon SHRIMP U-Pb age of porphyroclastic lava in northern Guangdong province and its geological significance. Geol J China Univ 18:601–608

    Google Scholar 

  • Xu WJ, Xu XS (2015) Early Paleozoic intracontinental felsic magmatism in the South China block: petrogenesis and geodynamics. Lithos 234-235:79–92

    Article  Google Scholar 

  • Xun Z, Allen MB, Whitham AG, Price SP (1996) Rift-related Devonian sedimentation and basin development in South China. J SE Asian Earth Sci 14:37–52

    Article  Google Scholar 

  • Yao WH, Li ZX, Li WX, Wang XC, Li XH, Yang JH (2012) Post-kinematic lithospheric delamination of the Wuyi-Yunkai orogen in South China: evidence from ca. 435 Ma high-Mg basalts. Lithos 154:115–129

    Article  Google Scholar 

  • Yu Y, Huang XL, He PL, Li J (2016) I-type granitoids associated with the early Paleozoic intracontinental orogenic collapse along pre-existing block boundary in South China. Lithos 248:353–365

    Article  Google Scholar 

  • Zhang Q, Jiang YH, Wang GC, Liu Z, Ni CY, Qing L (2015) Origin of Silurian gabbros and I-type granites in Central Fujian, SE China: implications for the evolution of the early Paleozoic orogen of South China. Lithos 216:285–297

    Article  Google Scholar 

  • Zhong YF, Ma CQ, Zhang C, Wang SM, She ZB, Liu L, Xu HJ (2013) Zircon U-Pb age, Hf isotopic compositions and geochemistry of the Silurian Fengdingshan I-type granite pluton and Taoyuan mafic-felsic complex at the southeastern margin of the Yangtze block. J Asian Earth Sci 74:11–24

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant 41430208) and the National Basic Research Program of China (2012CB416701). We are grateful to Prof. Qiang Wang for the comments and editorial handling. Two anonymous reviewers are thanked for their careful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xisheng Xu.

Additional information

Editorial handling: Q. Wang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Xu, X. An early Paleozoic monzonorite–granite suite in the South China block: implications for the intracontinental felsic magmatism. Miner Petrol 111, 709–728 (2017). https://doi.org/10.1007/s00710-016-0488-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-016-0488-5

Keywords

Navigation