Skip to main content

The Granulite — Granite Connexion

  • Chapter
Granulites and Crustal Evolution

Part of the book series: NATO ASI Series ((ASIC,volume 311))

Abstract

Granulites may be produced in either fluid-present or fluid-absent metamorphism. Fluid-present granulites can be formed by relatively low-T dehydration reactions, in the presence of a fluid dominated by a species other than H2O (e.g., CO2). Small quantities of H2O-rich fluid may be present at the onset of granulite facies conditions (≥ 650°C). This will promote limited degrees of partial fusion and the formation of granulitic migmatites, but will not produce mobile granitoid magma. Much of the lowermost crust is composed of non-restitic metagabbros and cumulates. However, the middle and lower crust also contain a substantial component of granulitic restite. This is derived through fluid-absent partial melting of common crustal rock-types that had been through earlier hydration cycles. Only fluid-absent granulites, produced at T ≥ 850°C, can have intimate, cogenetic connexions with voluminous granitoids. Non-restitic, mafic granulites represent basaltic magma that provided the heat source for metamorphism and melting of the overlying rocks. Restitic granulites are the refractory, residual complements of the granitoid magmas emplaced at higher levels. Silicic magmatism is most commonly a manifestation of crustal growth through under- and intra-plating of mantle-derived magma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atherton, M. P. and Gobble, C. D. (eds), 1983. Migmatites, Melting and Metamorphism, Shiva, Nantwich, U.K., 326 pp.

    Google Scholar 

  • Buddington, A. F., 1959. ‘Granite emplacement with special reference to North America’, Bull.Geol.Soc.Am. 70:671–748.

    Article  Google Scholar 

  • Clemens, J. D., 1974. The Geology of the Round Hill Area, Broken Hill, N.S.W. Some Structural and Petrographic Aspects, unpubl. M.Sc. (prelim.) thesis, Monash University Australia.

    Google Scholar 

  • Clemens, J. D., 1984. ‘Water contents of silicic to intermediate magmas’, Lithos 17: 273–287.

    Article  Google Scholar 

  • Clemens, J. D. and Vielzeuf, D., 1987. ‘Constraints on melting and magma production in the crust’, Earth Planet. Sci. Lett. 86: 287–306.

    Article  Google Scholar 

  • Clemens, J. D. and Vielzeuf, D., 1988. ‘Phlogopite phase relations in the system KMASH: new data and a reappraisal of phase relations’ (abstr.), EOS 69: in press.

    Google Scholar 

  • Clemens, J. D. and Wall, V. J., 1981. ‘Crystallization and origin of some peraluminous (S-type) granitic magmas’, Can. Mineral. 19: 111–132.

    Google Scholar 

  • Eggler, D. H., 1973. ‘Principles of melting of hydrous phases in silicate melt’, Carnegie Inst.Washington Yearbook 72: 491–495.

    Google Scholar 

  • Eggler, D. H. and Holloway, J. R., 1977. ‘Partial melting of peridotite in the presence of H2O and CO2: principles and review’, Oregon Dept. Geol. Min. Ind. Bull. 96: 15–36.

    Google Scholar 

  • Ellis, D. J., 1987. ‘Origin of granulites in normal and thickened crusts’, Geology 15: 167–170.

    Article  Google Scholar 

  • England, P. C. and Thompson, A. B., 1986. ‘Some thermal and tectonic models for crustal melting in continental collision zones’, Geol. Soc. Spec. Pub. 19: 83–94.

    Article  Google Scholar 

  • Eskola, P., 1932. ‘On the origin of granitic magmas’, Mineralog. Petrogr. Mitt. 42: 455–481.

    Google Scholar 

  • Etheridge, M. A., Wall, V. J. and Vernon, R. H., 1983. ‘The role of the fluid phase during regional metamorphism’, J. Metamorphic Geol. 1: 205–226.

    Article  Google Scholar 

  • Eugster, H. P., 1977. ‘Compositions and thermodynamics of metamorphic solutions’, in Fraser, D. G. (ed.), Thermodynamics in Geology, D. Reidel, Dordrecht, Netherlands, pp. 183–202.

    Google Scholar 

  • Flood, R. H. and Vernon, R. H., 1978. ‘The Cooma granodiorite, Australia: an example of in situ crustal anatexis?’, Geology 6: 81–84.

    Article  Google Scholar 

  • Furlong, K. P. and Fountain, D. M., 1986. ‘Continental crustal underplating: thermal considerations and seismic-petrologic consequences’, J. Geophys. Res. 91: 8285–8294.

    Article  Google Scholar 

  • Fyfe, W. S., 1973. ‘The granulite facies, partial melting and the Archean crust’, Phil. Trans. R. Soc. Lond. A273: 457–461.

    Article  Google Scholar 

  • Fyfe, W. S., Price, N. J. and Thompson, A.B., 1978. Fluids in the Earth’s Crust, Elsevier, Amsterdam, Netherlands, 383 pp.

    Google Scholar 

  • Grant, J. A., 1985. ‘Phase equilibria in partial melting of pelitic rocks’, in Ashworth, J. R. (ed.), Migmatites, Blackie & Son, Glasgow, U.K., pp. 86–144.

    Google Scholar 

  • Grant, J. A., 1986. ‘Quartz — phlogopite — liquid equilibria and origins of charnockites’, Am. Mineral. 71: 1071–1075.

    Google Scholar 

  • Grew, E. S., 1984. ‘A review of antarctic granulite-facies rocks’, Tectonophysics 105: 177–191.

    Article  Google Scholar 

  • Herzberg, C. T., 1983. ‘Density constraints on the formation of the continental Moho and crust’, Contrib. Mineral. Petrol. 84: 1–5.

    Article  Google Scholar 

  • Holloway, J. R., 1981. ‘Volatile interactions in magmas’, in Newton, R. C., Navrotsky, A. and Wood, B. J. (eds), Thermodynamics of Minerals and Melts, Springer-Verlag, New York, U.S.A., pp. 273–293.

    Google Scholar 

  • Huppert, H. E. and Sparks, R. S. J., 1988. ‘The generation of granitic magmas by intrusion of basalt into continental crust’, J. Petrol. 29: 599–624.

    Google Scholar 

  • Janardhan, A. S., Newton, R. C. and Hansen, E. C., 1982. ‘The transformation of amphibolite facies gneiss to charnockite in southern Kamataka and northern Tamil Nadu, India’, Contrib. Mineral. Petrol. 79: 130–149.

    Article  Google Scholar 

  • Johannes, W., 1988. ‘What controls partial melting in migmatites?’, J. Metamorphic Geol. 6: 451–465.

    Article  Google Scholar 

  • Kenah, C. and Hollister, L. S., 1983. ‘Anatexis in the Central Gneiss Complex, British Columbia’, in Atherton, M. P. and Gribble, C. D. (eds), Migmatites, Melting and Metamorphism, Shiva, Nantwich, U.K., pp. 142–162.

    Google Scholar 

  • Lamb, W. and Valley, J. W., 1984. ‘Metamorphism of reduced granulites in low-CO2 vapour-free environment’, Nature 312: 56–58.

    Article  Google Scholar 

  • Le Breton, N. and Thompson, A. B., 1988. ‘Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexis’, Contrib. Mineral. Petrol. 99: 226–237.

    Article  Google Scholar 

  • Munksgaard, N. C., 1988. ‘Source of the Cooma Granodiorite, New South Wales — a possible role of fluid — rock interactions’, Austr. J. Earth Sci. 35: 363–377.

    Article  Google Scholar 

  • Newton, R. C., Smith, J. V. and Windley, B.F., 1980. ‘Carbonic metamorphism, granulites, and crustal growth’, Nature 288: 45–50.

    Article  Google Scholar 

  • Olsen, S. K., 1987. ‘The composition and role of the fluid in migmatites: a fluid inclusion study of the Front Range rocks’, Contrib. Mineral. Petrol. 96: 104–120.

    Article  Google Scholar 

  • Pattison, D. R. M. and Harte, B., 1988. ‘Evolution of structurally contrasting anatectic migmatites in the 3-kbar Ballachulish aureole, Scotland’, J. Metamorphic. Geol. 6: 475–494.

    Article  Google Scholar 

  • Peterson, J. W. and Newton, R. C., 1987. ‘Reversed biotite + quartz melting reactions’ (abstr.), EOS 68: 451.

    Google Scholar 

  • Phillips, G. N., 1980. ‘Water activity changes across an amphibolite-granulite facies transition, Broken Hill, Australia’, Contrib. Mineral. Petrol. 75: 377–386.

    Article  Google Scholar 

  • Ruiz, J., Patchett, P. J. and Arculus, R. J., 1988. ‘Nd — Sr isotopic composition of lower crustal xenoliths — evidence for the origin of mid-tertiary felsic volcanics in Mexico’, Contrib. Mineral. Petrol. 99: 36–43.

    Article  Google Scholar 

  • Rumble, D., 1988. ‘Fluid flow during regional metamorphism’ (abstr.), EOS 69: 464.

    Google Scholar 

  • Rushmer, T., 1987. ‘Fluid-absent melting of amphibolite — experimental results at 8 kbar’ (abstr.), Terra Cognita 7: 286.

    Google Scholar 

  • Rutter, E. H. and Brodie, K. H., 1985. ‘The permeation of water into hydrating shear zones’, in Thompson, A. B. and Rubie, D. C. (eds), Metamorphic Reactions. Kinetics, Textures and Deformation, Springer-Verlag, New York, U.S.A., pp. 242–250.

    Google Scholar 

  • Rutter, M. J. and Wyllie, P. J., 1988. ‘Melting of vapour-absent tonalite at 10 kbar to simulate dehydration-melting in the deep crust’, Nature 331: 159–160.

    Article  Google Scholar 

  • Sandiford, M. and Powell, R., 1986a. ‘Pyroxene exsolution in granulites from Fyfe Hills, Enderby Land, Antarctica: evidence for 1000°C metamorphic temperatures in Archean continental crust’, Am. Mineral. 71: 946–954.

    Google Scholar 

  • Sandiford, M. and Powell, R., 1986b. ‘Deep crustal metamorphism during continental extension: modern and ancient examples’, Earth Planet. Sci. Lett. 79: 151–158.

    Article  Google Scholar 

  • Sorensen, S. S., 1988. ‘Petralogy of amphibolite-facies mafic and ultramafic rocks from the Catalina Schist, southern California: metasomatism and migmatization in a subduction zone setting’, J. Metamorphic Geol. 6: 405–435.

    Article  Google Scholar 

  • Stähle, H. J., Raith, M., Hoernes, S. and Delfs, A., 1987. ‘Element mobility during incipient granulite formation at Kabbaldurga, southern India’, J. Petrol. 28: 803–834.

    Google Scholar 

  • Strong, D. F. and Dupuy, C., 1982. ‘Rare earth elements in the bimodal Mount Peyton batholith: evidence of crustal anatexis by mantle-derived magma’, Can. J. Earth Sci. 19: 308–315.

    Article  Google Scholar 

  • Thompson, A. B., 1982. ‘Dehydration melting of pelitic rocks and the generation of H2O-undersaturated granitic liquids’, Am. J. Sci. 282: 1567–1595.

    Article  Google Scholar 

  • Thompson, A. B. and Ridley, J. R., 1987. ‘Pressure — temperatute — time (P-T-t) histories of orogenic belts’, Phil. Trans. R. Soc. Lond. A321: 27–45.

    Article  Google Scholar 

  • Thompson, A. B. and Tracy, R. J., 1979. ‘Model systems for anatexis of pelitic rocks. II. Facies series melting and reactions in the system CaO - KAlO2 - NaAlO2 - Al2O3 - SiO2 - H2O’, Contrib. Mineral. Petrol. 70:429–438.

    Article  Google Scholar 

  • Tracy, R. J. and Robinson, P., 1983. ‘Acadian migmatite types in pelitic rocks of Central Massachusetts’, in Atherton, M. P. and Gribble, C. D. (eds), Migmatites, Melting and Metamorphism, Shiva, Nantwich, U.K., pp. 163–173.

    Google Scholar 

  • Vielzeuf, D. and Holloway, J. R., 1988. ‘Experimental determination of the fluid-absent melting relations in the pelitic system. Consequences for crustal differentiation’, Contrib. Mineral. Petrol. 98: 257–276.

    Article  Google Scholar 

  • Watson, E. B. and Brenan, J. M., 1987. ‘Fluids in the lithosphere, 1. Experimentally determined wetting characteristics of CO2 - H2O fluids and their implications for fluid transport, host-rock physical properties, and fluid inclusion formation’, Earth Planet. Sci. Lett. 85: 497–515.

    Article  Google Scholar 

  • Wells, P. R. A., 1981. ‘Accretion of continental crust: thermal and geochemical consequences’, Phil. Trans. R. Soc. Lond. A301: 347–357.

    Article  Google Scholar 

  • Wendlandt, R. F., 1981. ‘Influence of CO2 on melting of model granulite facies assemblages: a model for the genesis of charnockites’, Am. Mineral. 66: 1164–1174.

    Google Scholar 

  • Wickham, S. M. and Oxburgh, E. R., 1985. ‘Continental rifts as a setting for regional metamorphism’, Nature 318: 330–333.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Clemens, J.D. (1990). The Granulite — Granite Connexion. In: Vielzeuf, D., Vidal, P. (eds) Granulites and Crustal Evolution. NATO ASI Series, vol 311. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2055-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2055-2_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7422-3

  • Online ISBN: 978-94-009-2055-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics