Skip to main content
Log in

Synergistic effect of carbon nanotube on improving thermal stability, flame retardancy, and electrical conductivity of poly(butylene succinate)/piperazine pyrophosphate composites

  • Research
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Biodegradable poly(butylene succinate) (PBS) is considered as promising material to replace conventional nondegradable polymers in various engineering fields, but the applications are limited by its inherent flammability and low electrical conductivity. In this study, the synergistic effect of carbon nanotube (CNTs) on improving thermal stability, flame retardancy, and electrical conductivity of poly(butylene succinate)/piperazine pyrophosphate (PBS/PAPP) composites was investigated. Thermogravimetric analysis (TGA) demonstrated that the addition of CNTs could improve the thermal stability of PBS/PAPP composites, where the maximum mass loss temperature (Tmax) of PBS/18PAPP-2CNT increased by 9.1 °C in comparison with that of PBS/20PAPP. Meanwhile, PBS/18PAPP-2CNT exhibited the optimal flame retardancy with limited oxygen index (LOI) of 30.1%, V0 rating in UL-94 vertical burning test, and 79.6% reduction on the peak of heat release rate (PHRR) in cone calorimeter test. The synergistic effect of CNTs and PAPP was beneficial to construct high-quality char layer, resulting in the enhanced flame retardancy of PBS. Furthermore, the CNTs could improve the electrical conductivity of PBS/PAPP composites with low percolation threshold of 1.75 wt%, which was ascribed to the “volume excluded effect” of PAPP. Thus, the current work provided an efficient strategy to prepare multifunctional PBS composites to meet various engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

All of the material is owned by the authors and no permissions are required.

References

  1. Barletta M, Aversa C, Ayyoob M, Gisario A, Hamad K, Mehrpouya M, Vahabi H (2022) Poly(butylene succinate) (PBS): materials, processing, and industrial applications. Prog Polym Sci 132:101579

    Article  CAS  Google Scholar 

  2. Feng JB, Lu YX, Xie HY, Zhang Y, Huo SQ, Liu XH, Flynn M, Xu ZG, Burey P, Lynch M, Wang H, Song PA (2023) Atom-economic synthesis of an oligomeric P/N-containing fire retardant towards fire-retarding and mechanically robust polylactide biocomposites. J Mater Sci Technol 160:86–95

    Article  Google Scholar 

  3. Yao MH, Liu LH, Ma CC, Zhang H, Zhang Y, Song RY, Fang ZP, Song PA (2023) A lysine-derived flame retardant for improved flame retardancy, crystallinity, and aqueous-phase degradation of polylactide. Chem Eng J 462:142189

    Article  CAS  Google Scholar 

  4. Yu YM, Xi LD, Yao MH, Liu LH, Zhang Y, Huo SQ, Fang ZP, Song PA (2022) Governing effects of melt viscosity on fire performances of polylactide and its fire-retardant systems. ISCIENCE 25:103950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liu L, Shi B, Zhang A, Xue Y, Zhang J, Dai JF, Hassanpour M, Tang LC, Shi YQ, Song PA (2022) A polyphosphoramide-grafted lignin enabled thermostable and fire-retardant polylactide with preserved mechanical properties. Compos Part A-APPL S 160:107028

    Article  CAS  Google Scholar 

  6. Liu LH, Yao MH, Zhang H, Zhang Y, Feng JB, Fang ZP, Song PA (2022) Aqueous self-assembly of bio-based flame retardants for fire-retardant, smoke-suppressive, and toughened polylactic acid. ACS Sustainable Chem Eng Early Access. https://doi.org/10.1021/acssuschemeng.2c05298

  7. Li L, Xu X, Wang B, Song P, Cao Q, Yang Y, Xu ZG, Wang H (2021) Structure, chain dynamics and mechanical properties of poly(vinyl alcohol)/phytic acid composites. Compos Commun 28:100970

    Article  Google Scholar 

  8. Hazwani F, Todo M (2021) Characterization of bending behavior of hydroxyapatite/biopolymer porous composite beams. Compos Commun 25:100747

    Article  Google Scholar 

  9. Siva V, Vanitha D, Murugan A, Shameem A, Bahadur SA (2021) Studies on structural and dielectric behaviour of PVA/PVP/SnO nanocomposites. Compos Commun 23:100597

    Article  Google Scholar 

  10. Qin CY, Chen K, Xu RY, Wang YM (2022) Nucleating effect of boron nitride nanotubes on poly(lactic acid) crystallization. Colloid Polym Sci 300:775–784

    Article  CAS  Google Scholar 

  11. Liu LB, Xu Y, Pan Y, Xu MJ, Di YF, Li B (2021) Facile synthesis of an efficient phosphonamide flame retardant for simultaneous enhancement of fire safety and crystallization rate of poly (lactic acid). Chem Eng J 421:127761

    Article  CAS  Google Scholar 

  12. Fang Y, Jiang Z, Zhao X, Dong J, Li X, Zhang Q (2022) Spent coffee grounds/poly(butylene succinate) biocomposites with robust mechanical property and heat resistance via reactive compatibilization. Compos Commun 29:101003

    Article  Google Scholar 

  13. Li Y, Yao S, Han C, Yu Y, Xiao L (2021) Ternary blends from biological poly(3-hydroxybutyrate-co-4-hydroxyvalerate), poly(L-lactic acid), and poly(vinyl acetate) with balanced properties. Int J Biol Macromol 181:60–71

    Article  CAS  PubMed  Google Scholar 

  14. Chen H, Wang T, Wen YL, Wen X, Gao DD, Yu RH, Chen XC, Mijowska E, Tang T (2019) Expanded graphite assistant construction of gradient-structured char layer in PBS/Mg(OH)2 composites for improving flame retardancy, thermal stability and mechanical properties. Compos Pt B-Eng 177:107402

    Article  CAS  Google Scholar 

  15. Yue XP, Li CF, Li Y (2021) Using colloidal lignin intercalated montmorillonite nanosheets as synergistic and reinforced agent for flame-retardant poly(butylene succinate) composites. Polym Adv Technol 32:2552–2565

    Article  CAS  Google Scholar 

  16. Xu H, Yu YC, Li Y (2021) Crystallization, rheological and mechanical properties of poly(butylene succinate)/poly(propylene carbonate)/poly(vinyl acetate) ternary blends. Colloid Polym Sci 299:1447–1458

    Article  CAS  Google Scholar 

  17. Xiao F, Fontaine G, Bourbigot S (2022) A highly efficient intumescent polybutylene succinate: flame retardancy and mechanistic aspects. Polym Degrad Stabil 196:109830

    Article  CAS  Google Scholar 

  18. Hu C, Bourbigot S, Delaunay T, Collinet M, Marcille S, Fontaine G (2020) Poly(isosorbide carbonate): a ‘green’ char forming agent in polybutylene succinate intumescent formulation. Compos Pt B-Eng 184:107675

    Article  CAS  Google Scholar 

  19. Chen S, Wu F, Hu Y, Lin S, Yu C, Zhu F, Wang X (2020) A fully bio-based intumescent flame retardant for poly(butylene succinate). Mater Chem Phys 252:123222

    Article  CAS  Google Scholar 

  20. Kuan C-F, Kuan H-C, Ma C-CM, Chen C-H (2006) Flame retardancy and nondripping properties of ammonium polyphosphate/poly(butylene succinate) composites enhanced by water crosslinking. J Appl Polym Sci 102:2935–2945

    Article  CAS  Google Scholar 

  21. Hu WZ, Wang BB, Wang X, Ge H, Song L, Wang J, Hu Y (2014) Effect of ethyl cellulose microencapsulated ammonium polyphosphate on flame retardancy, mechanical and thermal properties of flame retardant poly(butylene succinate) composites. J Therm Anal Calorim 117:27–38

    Article  CAS  Google Scholar 

  22. Yue XP, Li J, Liu PJ, Lin YC, Du X (2018) Study on the performance of flame-retardant esterified starch-modified cassava dregs-PBS composites. J Appl Polym Sci 135:46210

    Article  Google Scholar 

  23. Wang YH, Yue JF, Xie R, Liu CH, Gan L, Huang J (2020) High-value use of lignocellulosic-rich eucommia residue for promoting mechanical properties and flame retardancy of poly(butylene succinate). J Appl Polym Sci 137:48543

    Article  CAS  Google Scholar 

  24. Wang YM, Jiang DY, Wen X, Tang T, Szymanska K, Sielicki K, Wenelska K, Mijowska E (2021) Investigating the effect of aluminum diethylphosphinate on thermal stability, flame retardancy, and mechanical properties of poly(butylene succinate). Front Mater 8:737749

    Article  Google Scholar 

  25. Gumede TP, Luyt AS, Muller AJ (2018) Review on PCL, PBS, and PCL/PBS blends containing carbon nanotubes. Express Polym Lett 12:505–529

    Article  CAS  Google Scholar 

  26. Zhao ZG, Xue R, Mi DS, Chen CZ, Wang CX, Zhang X, Zhou ST (2023) Regulating the temperature-sensing behavior of poly(lactic acid) by incorporating multiwalled carbon nanotubes and graphene nanoplatelets. Polym Compos Early Access. https://doi.org/10.1002/pc.27565

    Article  Google Scholar 

  27. Wang H, Ren PG, Liu CY, Xu L, Li ZM (2014) Enhanced toughness and strength of conductive cellulose-poly(butylene succinate) films filled with multiwalled carbon nanotubes. Cellulose 21:1803–1812

    Article  CAS  Google Scholar 

  28. Huang A, Song X, Liu F, Wang H, Geng L, Wang H, Yi Q, Peng XF (2022) Supercritical fluids-assisted processing using CO2 foaming to enhance the dispersion of nanofillers in poly(butylene succinate)-based nanocomposites and the conductivity. J Polym Environ 30:3063–3077

    Article  CAS  Google Scholar 

  29. Kuang T, Ju J, Yang Z, Geng L, Peng X (2018) A facile approach towards fabrication of lightweight biodegradable poly (butylene succinate)/carbon fiber composite foams with high electrical conductivity and strength. Compos Sci Technol 159:171–179

    Article  CAS  Google Scholar 

  30. Phua YJ, Chow WS, Ishak ZAM (2013) Reactive processing of maleic anhydride-grafted poly(butylene succinate) and the compatibilizing effect on poly(butylene succinate) nanocomposites. Express Polym Lett 7:340–354

    Article  CAS  Google Scholar 

  31. Lee S, Morgan AB, Schiraldi DA, Maia J (2020) Improving the flame retardancy of polypropylene foam with piperazine pyrophosphate via multilayering coextrusion of film/foam composites. J Appl Polym Sci 137:48552

    Article  CAS  Google Scholar 

  32. Zanetti M, Kashiwagi T, Falqui L, Camino G (2002) Cone calorimeter combustion and gasification studies of polymer layered silicate nanocomposites. Chem Mat 14:881–887

    Article  CAS  Google Scholar 

  33. Wang B, Li P, Xu YJ, Jiang ZM, Dong CH, Liu Y, Zhu P (2020) Bio-based, nontoxic and flame-retardant cotton/alginate blended fibres as filling materials: thermal degradation properties, flammability and flame-retardant mechanism. Compos Pt B-Eng 194:108038

    Article  CAS  Google Scholar 

  34. Xu XD, Dai JF, Ma ZW, Liu LN, Zhang XH, Liu HZ, Tang LC, Huang G, Wang H, Song PA (2020) Manipulating interphase reactions for mechanically robust, flame-retardant and sustainable polylactide biocomposites. Compos Pt B-Eng 190:107930

    Article  CAS  Google Scholar 

  35. Xue YJ, Shen MX, Zheng YF, Tao WZ, Han YX, Li WD, Song PA, Wang H (2020) One-pot scalable fabrication of an oligomeric phosphoramide towards high-performance flame retardant polylactic acid with a submicron-grained structure. Compos Pt B-Eng 183:107695

    Article  CAS  Google Scholar 

  36. Kong QH, Zhu HJ, Huang S, Wu T, Zhu F, Zhang YL, Wang Y, Zhang JH (2022) Influence of multiply modified FeCu-montmorillonite on fire safety and mechanical performances of epoxy resin nanocomposites. Thermochim Acta 707:179112

    Article  CAS  Google Scholar 

  37. Chai HY, Li WX, Wan SB, Liu Z, Zhang YF, Zhang YL, Zhang JH, Kong QH (2023) Amino phenyl copper phosphate-bridged reactive phosphaphenanthrene to intensify fire safety of epoxy resins. Molecules 28:623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xu Y, Yan CT, Du CL, Xu K, Li YX, Xu MJ, Bourbigot S, Fontaine G, Li B, Liu LB (2023) High-strength, thermal-insulating, fire-safe bio-based organic lightweight aerogel based on 3D network construction of natural tubular fibers. Compos Pt B-Eng 261:110809

    Article  CAS  Google Scholar 

  39. Xiao D, Li Z, Gohs U, Wagenknecht U, Voit B, Wang DY (2017) Functionalized allylamine polyphosphate as a novel multifunctional highly efficient fire retardant for polypropylene. Polym Chem 8:6309–6318

    Article  CAS  Google Scholar 

  40. Wang DS, Wen X, Chen XC, Li YH, Mijowska E, Tang T (2018) A novel stiffener skeleton strategy in catalytic carbonization system with enhanced carbon layer structure and improved fire retardancy. Compos Sci Technol 164:82–91

    Article  CAS  Google Scholar 

  41. Liu W, Wang Z, Su S, Wu H, Sun M, Tang L (2022) Synergistic flame retardancy of ZnO and piperazine pyrophosphate/melamine cyanurate in polypropylene. J Vinyl Addit Techn Early Access. https://doi.org/10.1002/vnl.21956

    Article  Google Scholar 

  42. Li Z, Moon KS, Lin ZY, Yao YG, Wilkins S, Wong CP (2014) Carbon nanotubes inhibit the free-radical cross-linking of siloxane polymers. J Appl Polym Sci 131:40355

    Article  Google Scholar 

  43. Xu YJ, Qu LY, Liu Y, Zhu P (2021) An overview of alginates as flame-retardant materials: pyrolysis behaviors, flame retardancy, and applications. Carbohydr Polym 260:117827

    Article  CAS  PubMed  Google Scholar 

  44. Li YC, Huang XR, Zeng LJ, Li RF, Tian HF, Fu XW, Wang Y, Zhong WH (2019) A review of the electrical and mechanical properties of carbon nanofiller-reinforced polymer composites. J Mater Sci 54:1036–1076

    Article  CAS  Google Scholar 

  45. Bauhofer W, Kovacs JZ (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol 69:1486–1498

    Article  CAS  Google Scholar 

  46. Park SH, Hwang J, Park GS, Ha JH, Zhang M, Kim D, Yun DJ, Lee S, Lee SH (2019) Modeling the electrical resistivity of polymer composites with segregated structures. Nat Commun 10:2537

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (no. 22175102) and Taishan Scholar Constructive Engineering Foundation of Shandong Province (tsqn202103079).

Author information

Authors and Affiliations

Authors

Contributions

Yiming Wang: fabricated and characterized the samples, wrote the original manuscript; Fanjing Meng: participated part of the sample preparation; Junling Zhu: participated part of the sample characterization; Zhaotian Ba: participated part of the sample characterization; Dayong Jiang: writing—review and editing, supervision; Xin Wen: funding acquisition, writing—review and editing, supervision; Tao Tang: writing—review and editing, supervision.

Corresponding authors

Correspondence to Dayong Jiang or Xin Wen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

This declaration is not applicable. Our research does not need to use humans or animals as research objects.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Meng, F., Zhu, J. et al. Synergistic effect of carbon nanotube on improving thermal stability, flame retardancy, and electrical conductivity of poly(butylene succinate)/piperazine pyrophosphate composites. Colloid Polym Sci 301, 1529–1537 (2023). https://doi.org/10.1007/s00396-023-05166-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-023-05166-2

Keywords

Navigation