Skip to main content
Log in

Supercritical Fluids-Assisted Processing Using CO2 Foaming to Enhance the Dispersion of Nanofillers in Poly(butylene succinate)-Based Nanocomposites and the Conductivity

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

With the rapid development of electronic information technology, traditional metal conductive materials can no longer satisfy the needs of a wider industry. Poly(butylene succinate)/multiwalled carbon nanotubes (PBS/CNT) conductive polymer nanocomposites with varied CNT content were prepared by a HAAKE torque rheometer. The addition of CNT significantly improved the crystallization, viscoelasticity, and mechanical properties as well as thermal and electrical conductivity. Conductivity of the PBS/CNT nanocomposite with 5 wt% CNT increased from 8.23 × 10–15 S m−1 of pure PBS to 33.3 S m−1, an increase of 16 orders of magnitude. Moreover, the electrical percolation threshold \({\mathrm{\varphi }}_{\mathrm{c}}\) of the PBS/CNT nanocomposites was 2.8 wt% and the critical index was 1.56, showing that the conductive network structure was between 2 and 3D and 2D network structure dominated. To further improve the conductivity, microcellular foams were successfully fabricated by batch foaming with supercritical fluids (scCO2). The electrical conductivity of the PBS/CNT foam with 5 wt% CNT reached 67.8 S m−1 and it was 104% higher than the corresponding solid nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Maya MG, George SC, Jose T et al (2018) Development of a flexible and conductive elastomeric composite based on chloroprene rubber. Polym Test 65:256–263. https://doi.org/10.1016/j.polymertesting.2017.12.006

    Article  CAS  Google Scholar 

  2. Wan YJ, Zhu PL, Yu SH et al (2018) Anticorrosive, ultralight, and flexible carbon-wrapped metallic nanowire hybrid sponges for highly efficient electromagnetic interference shielding. Small 14(27):1800534–1800545

    Article  CAS  Google Scholar 

  3. Turkani VS, Maddipatla D, Narakathu BB et al (2018) A carbon nanotube based NTC thermistor using additive print manufacturing processes. Sens Actuator A Phys 279:1–9

    Article  CAS  Google Scholar 

  4. Wu HY, Jia LC, Yan DX et al (2018) Simultaneously improved electromagnetic interference shielding and mechanical performance of segregated carbon nanotube/polypropylene composite via solid phase molding. Compos Sci Technol 156:87–94

    Article  CAS  Google Scholar 

  5. Katerinopoulou D, Zalar P, Sweelssen J et al (2019) Large-area all-printed temperature sensing surfaces using novel composite thermistor materials. Adv Electron Mater 5(2):1800605–1800612

    Article  CAS  Google Scholar 

  6. Kim J, Lee D, Park K et al (2019) Silver fractal dendrites for highly sensitive and transparent polymer thermistors. Nanoscale 11(33):15464–15471

    Article  CAS  PubMed  Google Scholar 

  7. Guo Q, Luo Y, Liu J et al (2018) A well-organized graphene nanostructure for versatile strain-sensing application constructed by a covalently bonded graphene/rubber interface. J Mater Chem C 6(8):2139–2147

    Article  CAS  Google Scholar 

  8. Lu S, Tian C, Wang X et al (2018) Strain sensing behaviors of GnPs/epoxy sensor and health monitoring for composite materials under monotonic tensile and cyclic deformation. Compos Sci Technol 158:94–100

    Article  CAS  Google Scholar 

  9. Lin S, Zhao X, Jiang X et al (2019) Highly stretchable, adaptable, and durable strain sensing based on a bioinspired dynamically cross-linked graphene/polymer composite. Small 15(19):e1900848

    Article  PubMed  CAS  Google Scholar 

  10. Sharif F, Arjmand M, Moud AA et al (2017) Segregated hybrid poly(methyl methacrylate)/graphene/magnetite nanocomposites for electromagnetic interference shielding. ACS Appl Mater Interfaces 9(16):14171–14179

    Article  CAS  PubMed  Google Scholar 

  11. Liu Y, Zeng J, Han D et al (2018) Graphene enhanced flexible expanded graphite film with high electric, thermal conductivities and EMI shielding at low content. Carbon 133:435–445

    Article  CAS  Google Scholar 

  12. Xu L, Jia LC, Yan DX et al (2018) Efficient electromagnetic interference shielding of lightweight carbon nanotube/polyethylene compositesviacompression molding plus salt-leaching. RSC Adv 8(16):8849–8855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Basavaraja C, Kim JK, Huh DS (2014) Characterization and improved electrical conductivity of partially biodegradable polyaniline/poly(1,4-butylene succinate) polymer composite films. Polym Compos 35(10):2010–2017

    Article  CAS  Google Scholar 

  14. Kaykha Y, Rafizadeh M (2019) Effect of graphene oxide on features of functionalizable poly(butylene fumarate) and functional poly(butylene succinate) doped polyaniline. Polymer 166:138–147

    Article  CAS  Google Scholar 

  15. Wang H, Ren PG, Liu CY et al (2014) Enhanced toughness and strength of conductive cellulose-poly(butylene succinate) films filled with multiwalled carbon nanotubes. Cellulose 21(3):1803–1812

    Article  CAS  Google Scholar 

  16. Zeng RT, Hu W, Wang M et al (2016) Morphology, rheological and crystallization behavior in non-covalently functionalized carbon nanotube reinforced poly(butylene succinate) nanocomposites with low percolation threshold. Polym Test 50:182–190

    Article  CAS  Google Scholar 

  17. Kuang T, Ju J, Yang Z et al (2018) A facile approach towards fabrication of lightweight biodegradable poly (butylene succinate)/carbon fiber composite foams with high electrical conductivity and strength. Compos Sci Technol 159:171–179

    Article  CAS  Google Scholar 

  18. Ma X, Chang PR, Yu J et al (2008) Characterizations of glycerol plasticized-starch (GPS)/carbon black (CB) membranes prepared by melt extrusion and microwave radiation. Carbohydr Polym 74(4):895–900

    Article  CAS  Google Scholar 

  19. Arjmand M, Apperley T, Okoniewski M et al (2012) Comparative study of electromagnetic interference shielding properties of injection molded versus compression molded multi-walled carbon nanotube/polystyrene composites. Carbon 50(14):5126–5134

    Article  CAS  Google Scholar 

  20. Dai K, Zhao S, Zhai W et al (2013) Tuning of liquid sensing performance of conductive carbon black (CB)/polypropylene (PP) composite utilizing a segregated structure. Compos A Appl Sci Manuf 55:11–18

    Article  CAS  Google Scholar 

  21. Shih YF, Chen LS, Jeng RJ (2008) Preparation and properties of biodegradable PBS/multi-walled carbon nanotube nanocomposites. Polymer 49(21):4602–4611

    Article  CAS  Google Scholar 

  22. Maitra T, Sharma S, Srivastava A et al (2012) Improved graphitization and electrical conductivity of suspended carbon nanofibers derived from carbon nanotube/polyacrylonitrile composites by directed electrospinning. Carbon 50(5):1753–1761

    Article  CAS  Google Scholar 

  23. Hu C, Li Z, Wang Y et al (2017) Comparative assessment of the strain-sensing behaviors of polylactic acid nanocomposites: reduced graphene oxide or carbon nanotubes. J Mater Chem C 5(9):2318–2328

    Article  CAS  Google Scholar 

  24. Chen J, Wang L, Gui X et al (2017) Strong anisotropy in thermoelectric properties of CNT/PANI composites. Carbon 114:1–7

    Article  CAS  Google Scholar 

  25. Liu H, Gao J, Huang W et al (2016) Electrically conductive strain sensing polyurethane nanocomposites with synergistic carbon nanotubes and graphene bifillers. Nanoscale 8(26):12977–12989

    Article  CAS  PubMed  Google Scholar 

  26. Sharif F, Arjmand M, Moud AA et al (2017) Segregated hybrid poly(methyl methacrylate)/graphene/magnetite nanocomposites for electromagnetic interference shielding. ACS Appl Mater Inter 9(16):14171–14179

    Article  CAS  Google Scholar 

  27. Zhao S, Lou D, Zhan P et al (2017) Heating-induced negative temperature coefficient effect in conductive graphene/polymer ternary nanocomposites with a segregated and double-percolated structure. J Mater Chem C 5(32):8233–8242

    Article  CAS  Google Scholar 

  28. Chen J, Lu H, Yang J et al (2014) Effect of organoclay on morphology and electrical conductivity of PC/PVDF/CNT blend composites. Compos Sci Technol 94:30–38

    Article  CAS  Google Scholar 

  29. Zhang K, Yu HO, Shi YD et al (2017) Morphological regulation improved electrical conductivity and electromagnetic interference shielding in poly(l-lactide)/poly(ε-caprolactone)/carbon nanotube nanocomposites via constructing stereocomplex crystallites. J Mater Chem C 5(11):2807–2817

    Article  CAS  Google Scholar 

  30. Wang X, Zhuang Y, Dong L (2012) Study of carbon black-filled poly(butylene succinate)/polylactide blend. J Appl Polym Sci 126(6):1876–1884

    Article  CAS  Google Scholar 

  31. Ellingham T, Duddleston L, Turng LS (2017) Sub-critical gas-assisted processing using CO2 foaming to enhance the exfoliation of graphene in polypropylene + graphene nanocomposites. Polymer 117:132–139

    Article  CAS  Google Scholar 

  32. Zhi X, Zhang HB, Liao YF et al (2015) Electrically conductive polycarbonate/carbon nanotube composites toughened with micron-scale voids. Carbon 82:195–204

    Article  CAS  Google Scholar 

  33. Patwary F, Matsko N, Mittal V (2018) Biodegradation properties of melt processed PBS/chitosan bio-nanocomposites with silica, silicate, and thermally reduced graphene. Polym Compos 39(2):386–397

    Article  CAS  Google Scholar 

  34. Guidotti G, Soccio M, Siracusa V et al (2017) Novel random PBS-based copolymers containing aliphatic side chains for sustainable flexible food packaging. Polymer 9(12):724

    Article  CAS  Google Scholar 

  35. Liminana P, Garcia-Sanoguera D, Quiles-Carrillo L et al (2018) Development and characterization of environmentally friendly composites from poly (butylene succinate)(PBS) and almond shell flour with different compatibilizers. Compos B Eng 144:153–162

    Article  CAS  Google Scholar 

  36. Pentia E, Pintilie L, Matei I et al (2003) Combined chemical–physical methods for enhancing IR photoconductive properties of PbS thin films. Infrared Phys Technol 44(3):207–211

    Article  CAS  Google Scholar 

  37. Zhao L, Jiang W, Zhou H et al (2021) Preparation, morphology and properties of biodegradable phloem fiber of alchornea davidii franch reinforced PBS composites. Mater Res Express 8(7):075507

    Article  CAS  Google Scholar 

  38. Hong K, Nakayama K, Park S (2002) Effects of protective colloids on the preparation of poly (l-lactide)/poly (butylene succinate) microcapsules. Eur Polym J 38(2):305–311

    Article  CAS  Google Scholar 

  39. Hsieh HC, Wu N, Chuang TH et al (2020) Eco-friendly polyfluorene/poly (butylene succinate) blends and their electronic device application on biodegradable substrates. ACS Appl Polym Mater 2(6):2469–2476

    Article  CAS  Google Scholar 

  40. Mi HY, Salick MR, Jing X et al (2013) Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding. Mater Sci Eng C 33(8):4767–4776

    Article  CAS  Google Scholar 

  41. Wang G, Zhao G, Zhang L et al (2018) Lightweight and tough nanocellular PP/PTFE nanocomposite foams with defect-free surfaces obtained using in situ nanofibrillation and nanocellular injection molding. Chem Eng J 350:1–11

    Article  CAS  Google Scholar 

  42. Berki P, Németh Z, Réti B et al (2013) Preparation and characterization of multiwalled carbon nanotube/In2O3 composites. Carbon 60:266–272

    Article  CAS  Google Scholar 

  43. Yuan L, Wu D, Zhang M et al (2011) Rheological percolation behavior and isothermal crystallization of poly (butyene succinte)/carbon nanotube composites. Ind Eng Chem Res 50(24):14186–14192

    Article  CAS  Google Scholar 

  44. Huang A, Kharbas H, Ellingham T et al (2017) Mechanical properties, crystallization characteristics, and foaming behavior of polytetrafluoroethylene-reinforced poly(lactic acid) composites. Polym Eng Sci 57(5):570–580

    Article  CAS  Google Scholar 

  45. Guo Y, Cao C, Luo F et al (2019) Largely enhanced thermal conductivity and thermal stability of ultra high molecular weight polyethylene composites via BN/CNT synergy. RSC Adv 9(70):40800–40809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yang CJ, Huang T, Yang JH et al (2017) Carbon nanotubes induced brittle-ductile transition behavior of the polypropylene/ethylene-propylene-diene terpolymer blends. Compos Sci Technol 139:109–116

    Article  CAS  Google Scholar 

  47. Weber M, Kamal MR (1997) Estimation of the volume resistivity of electrically conductive composites. Polym Compos 18(6):711–725

    Article  CAS  Google Scholar 

  48. Gao JF, Li ZM, Meng QJ et al (2008) CNTs/ UHMWPE composites with a two-dimensional conductive network. Mater Lett 62(20):3530–3532

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 51573063 and No. 21174044), Scientific Research Foundation of Fujian University of Technology (GY-Z19048), Natural Science Foundation of Fujian Province (2020J05190 and 2020J02007), Open Fund of Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology (ICBR-2020-14), Open Fund of Key Laboratory of Polymer Materials and Products of Universities in Fujian (Fujian University of Technology (KF-C19011).

Funding

This work was supported by Natural Science Foundation of Fujian Province (2020J05190 and 2020J02007), Open Fund of Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology (ICBR-2020-14).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to An Huang or Qizhong Yi.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, A., Song, X., Liu, F. et al. Supercritical Fluids-Assisted Processing Using CO2 Foaming to Enhance the Dispersion of Nanofillers in Poly(butylene succinate)-Based Nanocomposites and the Conductivity. J Polym Environ 30, 3063–3077 (2022). https://doi.org/10.1007/s10924-022-02389-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02389-2

Keywords

Navigation