Skip to main content
Log in

Investigation on molecular sieve 4A as synergist to improve thermal stability and flame retardancy of biodegradable PBS/PAPP composites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

As a promising biodegradable polymer, poly(butylene succinate) (PBS) is limited by its inherent flammable and melt-dripping nature. In this study, the effect of molecular sieve 4A (MS4A) as synergist on thermal stability and flame retardancy of PBS/piperazine pyrophosphate (PAPP) composites was investigated. TGA results showed that the addition of MS4A could effectively improve the thermal stability of PBS/PAPP composites both in nitrogen and air atmospheres. Compared to PBS/20PAPP, PBS/17PAPP-3MS4A exhibited the optimal flame retardancy with limited oxygen index of 29.8%, V0 rating in UL-94 vertical burning test, and 86.6% reduction on the peak of heat release rate in cone calorimeter test. According to the analysis for char morphology and microstructure, the combination of PPAP/MS4A mainly imparted its flame retardancy through condensed phase. The enhancement mechanism was ascribed to their catalytic carbonization effect and the migration of MS4A to construct stronger char layer in out interface during combustion. This work provides a new intumescent flame-retardant system with high efficiency and low toxicity, which will greatly promote the widely applications of PBS composites.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Barletta M, Aversa C, Ayyoob M, Gisario A, Hamad K, Mehrpouya M, et al. Poly(butylene succinate) (PBS): materials, processing, and industrial applications. Prog Polym Sci. 2022;132(101579):8–81. https://doi.org/10.1016/j.progpolymsci.2022.101579.

    Article  CAS  Google Scholar 

  2. Guadagno L, Raimondo M, Catauro M, Sorrentino A, Calabrese E. Design of self-healing biodegradable polymers. J Therm Anal Calorim. 2022;147(9):5463–72. https://doi.org/10.1007/s10973-022-11202-0.

    Article  CAS  Google Scholar 

  3. Czerniecka-Kubicka A, Janowski G, Pyda M, Frącz W. Biocomposites based on the poly(3-hydroxybutyrate-co-3-hydroxyvalerate) matrix with the hemp fibers: thermal and mechanical properties. J Therm Anal Calorim. 2022;147(2):1017–29. https://doi.org/10.1007/s10973-020-10492-6.

    Article  CAS  Google Scholar 

  4. Li L, Xu X, Wang B, Song P, Cao Q, Yang Y, et al. Structure, chain dynamics and mechanical properties of poly(vinyl alcohol)/phytic acid composites. Compos Commun. 2021;28:100970. https://doi.org/10.1016/j.coco.2021.100970.

    Article  Google Scholar 

  5. Maqsood M, Langensiepen F, Seide G. Investigation of melt spinnability of plasticized polylactic acid biocomposites-containing intumescent flame retardant. J Therm Anal Calorim. 2020;139(1):305–18. https://doi.org/10.1007/s10973-019-08405-3.

    Article  CAS  Google Scholar 

  6. Běhálek L, Borůvka M, Brdlík P, Habr J, Lenfeld P, Kroisová D, et al. Thermal properties and non-isothermal crystallization kinetics of biocomposites based on poly(lactic acid), rice husks and cellulose fibres. J Therm Anal Calorim. 2020;142(2):629–49. https://doi.org/10.1007/s10973-020-09894-3.

    Article  CAS  Google Scholar 

  7. Hazwani F, Todo M. Characterization of bending behavior of hydroxyapatite/biopolymer porous composite beams. Compos Commun. 2021;25:100747. https://doi.org/10.1016/j.coco.2021.100747.

    Article  Google Scholar 

  8. Liu L, Shi B, Zhang A, Xue Y, Zhang J, Dai J, et al. A polyphosphoramide-grafted lignin enabled thermostable and fire-retardant polylactide with preserved mechanical properties. Compos Pt A Appl Sci Manuf. 2022;160:107028. https://doi.org/10.1016/j.compositesa.2022.107028.

    Article  CAS  Google Scholar 

  9. Siva V, Vanitha D, Murugan A, Shameem A, Bahadur SA. Studies on structural and dielectric behaviour of PVA/PVP/SnO nanocomposites. Compos Commun. 2021;23:100597. https://doi.org/10.1016/j.coco.2020.100597.

    Article  Google Scholar 

  10. Fang Y, Jiang Z, Zhao X, Dong J, Li X, Zhang Q. Spent coffee grounds/poly(butylene succinate) biocomposites with Robust mechanical property and heat resistance via reactive compatibilization. Compos Commun. 2022;29:101003. https://doi.org/10.1016/j.coco.2021.101003.

    Article  Google Scholar 

  11. Li Y, Yao S, Han C, Yu Y, Xiao L. Ternary blends from biological poly(3-hydroxybutyrate-co-4-hydroxyvalerate), poly(L-lactic acid), and poly(vinyl acetate) with balanced properties. Int J Biol Macromol. 2021;181:60–71. https://doi.org/10.1016/j.ijbiomac.2021.03.127.

    Article  CAS  PubMed  Google Scholar 

  12. Chen H, Wang T, Wen YL, Wen X, Gao DD, Yu RH, et al. Expanded graphite assistant construction of gradient-structured char layer in PBS/Mg(OH)2 composites for improving flame retardancy, thermal stability and mechanical properties. Compos Pt B-Eng. 2019;177:107402. https://doi.org/10.1016/j.compositesb.2019.107402.

    Article  CAS  Google Scholar 

  13. Yue XP, Li CF, Li Y. Using colloidal lignin intercalated montmorillonite nanosheets as synergistic and reinforced agent for flame-retardant poly(butylene succinate) composites. Polym Adv Technol. 2021;32(6):2552–65. https://doi.org/10.1002/pat.5287.

    Article  CAS  Google Scholar 

  14. Xiao F, Fontaine G, Bourbigot S. A highly efficient intumescent polybutylene succinate: flame retardancy and mechanistic aspects. Polym Degrad Stab. 2022;196:109830. https://doi.org/10.1016/j.polymdegradstab.2022.109830.

    Article  CAS  Google Scholar 

  15. Hu C, Bourbigot S, Delaunay T, Collinet M, Marcille S, Fontaine G. Poly(isosorbide carbonate): a “green” char forming agent in polybutylene succinate intumescent formulation. Compos Pt B Eng. 2020;184:107675. https://doi.org/10.1016/j.compositesb.2019.107675.

    Article  CAS  Google Scholar 

  16. Chen S, Wu F, Hu Y, Lin S, Yu C, Zhu F, et al. A fully bio-based intumescent flame retardant for poly(butylene succinate). Mater Chem Phys. 2020;252:123222. https://doi.org/10.1016/j.matchemphys.2020.123222.

    Article  CAS  Google Scholar 

  17. Wang YM, Jiang DY, Wen X, Tang T, Szymanska K, Sielicki K, et al. Investigating the effect of aluminum diethylphosphinate on thermal stability, flame retardancy, and mechanical properties of poly(butylene succinate). Front Mater. 2021;8:737749. https://doi.org/10.3389/fmats.2021.737749.

    Article  Google Scholar 

  18. Wang X, Song L, Yang H, Lu H, Hu Y. Synergistic effect of graphene on antidripping and fire resistance of intumescent flame retardant poly(butylene succinate) composites. Ind Eng Chem Res. 2011;50(9):5376–83. https://doi.org/10.1021/ie102566y.

    Article  CAS  Google Scholar 

  19. Zhang S, Li YC, Guo J, Gu LL, Li HF, Fei B, et al. Preparation of hexakis (4-aldehyde phenoxy) cyclotriphosphazene grafted kaolinite and its synergistic fire resistance in poly (butylene succinate). Polym Compos. 2020;41(3):1024–35. https://doi.org/10.1002/pc.25434.

    Article  CAS  Google Scholar 

  20. Gu LL, Zhang S, Li HF, Sun J, Tang WF, Zhao LQ, et al. Preparation of intumescent flame retardant poly(butylene succinate) using urea intercalated kaolinite as synergistic agent. Fibers Polym. 2019;20(8):1631–40. https://doi.org/10.1007/s12221-019-7999-8.

    Article  CAS  Google Scholar 

  21. Liu YJ, Mao L, Fan SH. Preparation and study of intumescent flame retardant poly(butylene succinate) using MgAlZnFe-CO3 layered double hydroxide as a synergistic agent. J Appl Polym Sci. 2014;131(17):40736. https://doi.org/10.1002/app.40736.

    Article  CAS  Google Scholar 

  22. Yue JF, Liu CH, Zhou C, Fu XJ, Luo LH, Gan L, et al. Enhancing flame retardancy and promoting initial combustion carbonization via incorporating electrostatically surface-functionalized carbon nanotube synergist into intumescent flame-retardant poly (butylene succinate). Polymer. 2020;189:122197. https://doi.org/10.1016/j.polymer.2020.122197.

    Article  CAS  Google Scholar 

  23. Wang YH, Zhang S, Wu XM, Lu CL, Cai YQ, Ma LJ, et al. Effect of montmorillonite on the flame-resistant and mechanical properties of intumescent flame-retardant poly(butylene succinate) composites. J Therm Anal Calorim. 2017;128(3):1417–27. https://doi.org/10.1007/s10973-017-6092-z.

    Article  CAS  Google Scholar 

  24. Yue XP, Li Y, Li J, Xu YJ. Improving fire behavior and smoke suppression of flame-retardant PBS composites using lignin chelate as carbonization agent and catalyst. J Appl Polym Sci. 2021;138(41):e51199. https://doi.org/10.1002/app.51199.

    Article  CAS  Google Scholar 

  25. Liu PJ, Yue XP, He GJ, Zhang XL, Sun YF. Influence of modified fiber-MHSH hybrids on fire hazards, combustion dynamics, and mechanical properties of flame-retarded poly(butylene succinate) composites. J Appl Polym Sci. 2020;137(12):48490. https://doi.org/10.1002/app.48490.

    Article  CAS  Google Scholar 

  26. Yue XP, Li J, Liu PJ, Pu WJ, Lin YC. Investigation of flame-retarded poly(butylene succinate) composites using MHSH as synergistic and reinforced agent. J Mater Sci. 2018;53(7):5004–15. https://doi.org/10.1007/s10853-017-1915-7.

    Article  CAS  Google Scholar 

  27. Wang YH, Liu C, Lai JJ, Lu CL, Wu XM, Cai YQ, et al. Soy protein and halloysite nanotubes-assisted preparation of environmentally friendly intumescent flame retardant for poly (butylene succinate). Polym Test. 2020;81:106174. https://doi.org/10.1016/j.polymertesting.2019.106174.

    Article  CAS  Google Scholar 

  28. Wang YH, Liu C, Shi XH, Liang JY, Jia ZX, Shi G. Synergistic effect of halloysite nanotubes on flame resistance of intumescent flame retardant poly(butylene succinate) composites. Polym Compos. 2019;40(1):202–9. https://doi.org/10.1002/pc.24629.

    Article  CAS  Google Scholar 

  29. Xiao F, Fontaine G, Bourbigot S. Improvement of flame retardancy and antidripping properties of intumescent polybutylene succinate combining piperazine pyrophosphate and zinc borate. ACS Appl Polym Mater. 2022;4(3):1911–21. https://doi.org/10.1021/acsapm.1c01755.

    Article  CAS  Google Scholar 

  30. Blazsó M, Czégény Z. Catalytic destruction of brominated aromatic compounds studied in a catalyst microbed coupled to gas chromatography/mass spectrometry. J Chromatogr A. 2006;1130(1):91–6. https://doi.org/10.1016/j.chroma.2006.05.009.

    Article  CAS  PubMed  Google Scholar 

  31. Chen S-Y, Zhou X-T, Ji H-B. Insight into the cocatalyst effect of 4A molecular sieve on Sn(II) porphyrin-catalyzed B-V oxidation of cyclohexanone. Catal Today. 2016;264:191–7. https://doi.org/10.1016/j.cattod.2015.07.051.

    Article  CAS  Google Scholar 

  32. Phua YJ, Chow WS, Ishak ZAM. Reactive processing of maleic anhydride-grafted poly(butylene succinate) and the compatibilizing effect on poly(butylene succinate) nanocomposites. Express Polym Lett. 2013;7(4):340–54. https://doi.org/10.3144/expresspolymlett.2013.31.

    Article  CAS  Google Scholar 

  33. Lee S, Morgan AB, Schiraldi DA, Maia J. Improving the flame retardancy of polypropylene foam with piperazine pyrophosphate via multilayering coextrusion of film/foam composites. J Appl Polym Sci. 2020;137(15):48552. https://doi.org/10.1002/app.48552.

    Article  CAS  Google Scholar 

  34. Wen X, Zhang KY, Wang Y, Han LJ, Han CY, Zhang HL, et al. Study of the thermal stabilization mechanism of biodegradable poly(L-lactide)/silica nanocomposites. Polym Int. 2011;60(2):202–10. https://doi.org/10.1002/pi.2927.

    Article  CAS  Google Scholar 

  35. Zanetti M, Kashiwagi T, Falqui L, Camino G. Cone calorimeter combustion and gasification studies of polymer layered silicate nanocomposites. Chem Mater. 2002;14(2):881–7. https://doi.org/10.1016/j.combustflame.2009.08.002.

    Article  CAS  Google Scholar 

  36. Wang B, Li P, Xu YJ, Jiang ZM, Dong CH, Liu Y, et al. Bio-based, nontoxic and flame-retardant cotton/alginate blended fibres as filling materials: thermal degradation properties, flammability and flame-retardant mechanism. Compos Pt B Eng. 2020;194:108038. https://doi.org/10.1016/j.compositesb.2020.108038.

    Article  CAS  Google Scholar 

  37. Xu XD, Dai JF, Ma ZW, Liu LN, Zhang XH, Liu HZ, et al. Manipulating interphase reactions for mechanically robust, flame-retardant and sustainable polylactide biocomposites. Compos Part B Eng. 2020;190:107930. https://doi.org/10.1016/j.compositesb.2020.107930.

    Article  CAS  Google Scholar 

  38. Xue YJ, Shen MX, Zheng YF, Tao WZ, Han YX, Li WD, et al. One-pot scalable fabrication of an oligomeric phosphoramide towards high-performance flame retardant polylactic acid with a submicron-grained structure. Compos Part B Eng. 2020;183:107695. https://doi.org/10.1016/j.compositesb.2019.107695.

    Article  CAS  Google Scholar 

  39. Kong QH, Zhu HJ, Huang S, Wu T, Zhu F, Zhang YL, et al. Influence of multiply modified FeCu-montmorillonite on fire safety and mechanical performances of epoxy resin nanocomposites. Thermochim Acta. 2022;707:179112. https://doi.org/10.1016/j.tca.2021.179112.

    Article  CAS  Google Scholar 

  40. Chai HY, Li WX, Wan SB, Liu Z, Zhang YF, Zhang YL, et al. Amino phenyl copper phosphate-bridged reactive phosphaphenanthrene to intensify fire safety of epoxy resins. Molecules. 2023;28(2):623. https://doi.org/10.3390/molecules28020623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xiao D, Li Z, Gohs U, Wagenknecht U, Voit B, Wang D-Y. Functionalized allylamine polyphosphate as a novel multifunctional highly efficient fire retardant for polypropylene11. Polym Chem. 2017;8(40):6309–18. https://doi.org/10.1039/c7py01315a.

    Article  CAS  Google Scholar 

  42. Wang DS, Wen X, Chen XC, Li YH, Mijowska E, Tang T. A novel stiffener skeleton strategy in catalytic carbonization system with enhanced carbon layer structure and improved fire retardancy. Compos Sci Technol. 2018;164:82–91. https://doi.org/10.1016/j.compscitech.2018.05.040.

    Article  CAS  Google Scholar 

  43. Liu W, Wang Z, Su S, Wu H, Sun M, Tang L. Synergistic flame retardancy of ZnO and piperazine pyrophosphate/melamine cyanurate in polypropylene. J Vinyl Addit Technol. 2022. https://doi.org/10.1002/vnl.21956.

    Article  Google Scholar 

  44. Wen Y, Liu X, Wen X, Chen X, Szymańska K, Dobrzyńska R, et al. Na3PO4 assistant dispersion of nano-CaCO3 template to enhance electrochemical interface: N/O/P co-doped porous carbon hybrids towards high-performance flexible supercapacitors. Compos Part B Eng. 2020;199:108256. https://doi.org/10.1016/j.compscitech.2018.05.040.

    Article  CAS  Google Scholar 

  45. Xu X, Sielicki K, Min J, Li J, Hao C, Wen X, et al. One-step converting biowaste wolfberry fruits into hierarchical porous carbon and its application for high-performance supercapacitors. Renew Energy. 2022;185:187–95. https://doi.org/10.1016/j.renene.2021.12.040.

    Article  CAS  Google Scholar 

  46. Xu YJ, Qu LY, Liu Y, Zhu P. An overview of alginates as flame-retardant materials: pyrolysis behaviors, flame retardancy, and applications. Carbohydr Polym. 2021;260:10827. https://doi.org/10.1016/j.carbpol.2021.117827.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (no. 22175102) and Taishan Scholar Constructive Engineering Foundation of Shandong Province (tsqn202103079).

Author information

Authors and Affiliations

Authors

Contributions

YW contributed to conceptualization, methodology, validation, formal analysis, investigation, data curation, writing—original draft, and visualization. CL contributed to methodology, validation, formal analysis, investigation, data curation, and visualization. HL contributed to methodology, validation, formal analysis, investigation, data curation, and visualization. LM contributed to methodology, validation, formal analysis, investigation, software, and data curation. DJ contributed to conceptualization, methodology, validation, resources, and supervision. XW contributed to conceptualization, methodology, validation, resources, writing—review and editing, supervision, and project administration. TT contributed to conceptualization, methodology, validation, resources, and supervision.

Corresponding authors

Correspondence to Dayong Jiang or Xin Wen.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Li, C., Liu, H. et al. Investigation on molecular sieve 4A as synergist to improve thermal stability and flame retardancy of biodegradable PBS/PAPP composites. J Therm Anal Calorim 148, 9537–9546 (2023). https://doi.org/10.1007/s10973-023-12314-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12314-x

Keywords

Navigation