Skip to main content
Log in

Miscibility, morphology, and properties of poly(butylene succinate)/poly(vinyl acetate) blends

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Poly(butylene succinate) (PBS)/poly(vinyl acetate) (PVAc) blends were prepared by melt mixing. The miscibility, morphology, non-isothermal and isothermal crystallization, and rheological and mechanical properties of PBS/PVAc blends were investigated. The blends were a partial miscible two-phase system with PVAc evenly dispersed in the PBS matrix. The incorporation of PVAc accelerated the crystallization rate of PBS due to the heterogeneous nucleation, but decreased the degree of crystallinity. The rheological properties of PBS were greatly improved by the incorporation of PVAc, because of the high viscosity of PVAc in melt state. The most intriguing result was that the stiffness, strength, and toughness could be improved simultaneously by the addition of PVAc. The modulus, breaking strength, and elongation at break of PBS containing 10 wt% PVAc increased by 3.5%, 15.7%, and 43.4%, respectively. The synergetic improvement in the crystallization, rheological, and mechanical properties may be of much importance for widening the application of PBS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pawar SP, Misra A, Bose S, Chatterjee K, Mittal V (2015) Enzymatically degradable and flexible bio-nanocomposites derived from PHBV and PBAT blend: assessing thermal, morphological, mechanical, and biodegradation properties. Colloid Polym Sci 293:2921–2930

    Article  CAS  Google Scholar 

  2. Liu G, Zheng L, Zhang X, Li C, Wang D (2014) Critical stress for crystal transition in poly(butylene succinate)-based crystalline-amorphous multiblock copolymers. Macromolecules 47:7533–7539

    Article  CAS  Google Scholar 

  3. Du X, Wang Y, Huang W, Yang J, Wang Y (2015) Rheology and non-isothermal crystallization behaviors of poly(butylene succinate)/graphene oxide composites. Colloid Polym Sci 293:389–400

    Article  CAS  Google Scholar 

  4. Shi K, Liu Y, Hu X, Su T, Li P, Wang Z (2018) Preparation, characterization, and biodegradation of poly(butylene succinate)/cellulose triacetate blends. Int J Biol Macromol 114:373–380

    Article  CAS  PubMed  Google Scholar 

  5. Wang P, Tian Y, Wang G, Xu Y, Yang B, Lu B, Zhang W, Ji J (2015) Surface interaction induced transcrystallization in biodegradable poly(butylene succinate)-fibre composites. Colloid Polym Sci 293:2701–2707

    Article  CAS  Google Scholar 

  6. Chen C, Peng JS, Chen M, Lu HY, Tsai CJ, Yang CS (2010) Synthesis and characterization of poly(butylene succinate) and its copolyesters containing minor amounts of propylene succinate. Colloid Polym Sci 288:731–738

    Article  CAS  Google Scholar 

  7. Han SO, Lee SM, Park WH, Cho D (2006) Mechanical and thermal properties of waste silk fiber-reinforced poly(butylene succinate) biocomposites. J Appl Polym Sci 100:4972–4980

    Article  CAS  Google Scholar 

  8. The DT, Yoshii F, Nagasawa N, Kume T (2003) Synthesis of poly(butylene succinate)/glass fiber composite by irradiation and its biodegradability. J Appl Polym Sci 94:2122–2127

    Google Scholar 

  9. Liang J, Ding C, Wei Z, Sang L, Song P, Chen G, Chang Y, Xu J, Zhang W (2015) Mechanical, morphology, and thermal properties of carbon fiber reinforced poly(butylene succinate) composites. Polym Compos 36:1335–1345

    Article  CAS  Google Scholar 

  10. Someya Y, Nakazato T, Teramoto N, Shibata M (2004) Thermal and mechanical properties of poly(butylene succinate) nanocomposites with various organo-modified montmorillonites. J Appl Polym Sci 91:1463–1475

    Article  CAS  Google Scholar 

  11. Wang G, Guo B, Xu J, Li R (2011) Rheology, crystallization behaviors, and thermal stabilities of poly(butylene succinate)/pristine multiwalled carbon nanotube composites obtained by melt compounding. J Appl Polym Sci 121:59–67

    Article  CAS  Google Scholar 

  12. Liang Z, Pan P, Zhu B, Dong T, Inoue Y (2010) Mechanical and thermal properties of poly(butylene succinate)/plant fiber biodegradable composite. J Appl Polym Sci 115:3559–3567

    Article  CAS  Google Scholar 

  13. Ohkita T, Lee S-H (2010) Crystallization behavior of poly(butylene succinate)/corn starch biodegradable composite. J Appl Polym Sci 97:1107–1114

    Article  CAS  Google Scholar 

  14. Huang J, Lu X, Zhang N, Yang L, Qu J (2014) Study on the properties of nano-TiO2/polybutylene succinate composites prepared by vane extruder. Polym Compos 35:53–59

    Article  CAS  Google Scholar 

  15. Zakharova E, Lavilla C, Alla A, Martínez de Ilarduya A, Muñoz-Guerra S (2014) Modification of properties of poly(butylene succinate) by copolymerization with tartaric acid-based monomers. Eur Polym J 61:263–273

    Article  CAS  Google Scholar 

  16. Charlon S, Marais S, Dargent E, Soulestin J, Sclavonsf M, Follaina N (2015) Structure–barrier property relationship of biodegradable poly(butylene succinate) and poly[(butylene succinate)-co-(butylene adipate)] nanocomposites: influence of the rigid amorphous fraction. Phys Chem Chem Phys 17:29918–29934

    Article  CAS  PubMed  Google Scholar 

  17. Gan Z, Abe H, Kurokawa H, Doi Y (2001) Solid-state microstructures, thermal properties, and crystallization of biodegradable poly(butylene succinate) (PBS) and its copolyesters. Biomacromolecules 2:605–613

    Article  CAS  PubMed  Google Scholar 

  18. Gigli M, Lotti N, Gazzano M, Finelli L, Munari A (2012) Novel eco-friendly random copolyesters of poly(butylene succinate) containing ether-linkages. React Funct Polym 72:303–310

    Article  CAS  Google Scholar 

  19. Li S, Wu F, Yang Y, Wang Y, Zeng J (2015) Synthesis, characterization and isothermal crystallization behavior of poly(butylene succinate)-b-poly(diethylene glycol succinate) multiblock copolymers. Polym Adv Technol 26:1003–1013

    Article  CAS  Google Scholar 

  20. Zeng J, Li Y, Zhu Q, Yang K, Wang X, Wang Y (2009) A novel biodegradable multiblock poly(ester urethane) containing poly(L-lactic acid) and poly(butylene succinate) blocks. Polymer 50:1178–1186

    Article  CAS  Google Scholar 

  21. Zhu Q, He Y, Zeng J, Huang Q, Wang Y (2011) Synthesis and characterization of a novel multiblock copolyester containing poly(ethylene succinate) and poly(butylene succinate). Mater Chem Phys 130:943–949

    Article  CAS  Google Scholar 

  22. Lee S-l YS-C, Lee Y-S (2001) Degradable polyurethanes containing poly(butylene succinate) and poly(ethylene glycol). Polym Degrad Stab 72:81–87

    Article  Google Scholar 

  23. Huang C, Jiao L, Zhang J, Zeng J, Yang K, Wang Y (2012) Poly(butylene succinate)-poly(ethylene glycol) multiblock copolymer: synthesis, structure, properties and shape memory performance. Poly Chem-UR 3:800–808

    Article  CAS  Google Scholar 

  24. D’Ambrosio R, Michell RM, Mincheva R, Hernandez R, Mijangos C, Dubois P, MHYPERLIJ (2017) Crystallization and stereocomplexation of PLA-mb-PBS multi-block copolymers. Polymers 10:8

    Article  PubMed Central  CAS  Google Scholar 

  25. Zhang Y, Wang X, Wang Y, Yang K, Li J (2005) A novel biodegradable polyester from chain-extension of poly(p-dioxanone) with poly(butylene succinate). Polym Degrad Stab 88:294–299

    Article  CAS  Google Scholar 

  26. Wu D, Yuan L, Laredo E, Zhang M, Zhou W (2012) Interfacial properties, viscoelasticity, and thermal behaviors of poly(butylene succinate)/polylactide blend. Ind Eng Chem Res 51:2290–2298

    Article  CAS  Google Scholar 

  27. Wang H, Gan Z, Schultz JM, Yan S (2008) A morphological study of poly(butylene succinate)/poly(butylene adipate) blends with different blend ratios and crystallization processes. Polymer 49:2342–2353

    Article  CAS  Google Scholar 

  28. He Y, Zeng J, Li S, Wang Y (2012) Crystallization behavior of partially miscible biodegradable poly(butylene succinate)/poly(ethylene succinate) blends. Thermochim Acta 529:80–86

    Article  CAS  Google Scholar 

  29. Sivalingam G, Karthik R, Madras G (2004) Blends of poly(ɛ-caprolactone) and poly(vinyl acetate): mechanical properties and thermal degradation. Polym Degrad Stab 84:345–351

    Article  CAS  Google Scholar 

  30. Gajria AM, Davé V, Gross RA, McCarthy SP (1996) Miscibility and biodegradability of blends of poly(lactic acid) and poly(vinyl acetate). Polymer 37:437–444

    Article  CAS  Google Scholar 

  31. Huang T, Yang J, Zhang N, Zhang J, Wang Y (2018) Crystallization of poly(L-lactide) in the miscible poly(L-lactide)/poly(vinyl acetate) blend induced by carbon nanotubes. Polym Bull 75:2641–2655

    Article  CAS  Google Scholar 

  32. An Y, Li L, Dong L, MO Z, Feng Z (1999) Nonisothermal crystallization and melting behavior of poly(β-hydroxybutyrate)-poly(vinyl-acetate) blends. J Polym Sci Polym Phys 37:443–450

    Article  CAS  Google Scholar 

  33. Shafee EE (2001) Investigation of the phase structure of poly(3-hydroxybutyrate) /poly(vinyl acetate) blends by dielectric relaxation spectroscopy. Eur Polym J 37:451–458

    Article  CAS  Google Scholar 

  34. Yin J, Alfonso GG, Turturro A, Pedemonte E (1993) Thermodynamics of poly(ethylene oxide)–poly(vinyl acetate) blends. Polymer 34:1465–1470

    Article  CAS  Google Scholar 

  35. Juliana AL, Felisberti MI (2006) Poly(hydroxybutyrate) and epichlorohydrin elastomers blends: phase behavior and morphology. Eur Polym J 42:602–614

    Article  CAS  Google Scholar 

  36. Kajiyama T, Tanaka K, Takahara A (1997) Surface molecular motion of the monodisperse polystyrene films. Macromolecules 30:280–285

    Article  CAS  Google Scholar 

  37. Bauer KN, Tee HT, Lieberwirth I, Wurm FR (2016) In-chain poly(phosphonate)s via acyclic diene metathesis polycondensation. Macromolecules 49:3761–3768

    Article  CAS  Google Scholar 

  38. Han L, Han C, Zhang H, Chen S, Dong L (2012) Morphology and properties of biodegradable and biosourced polylactide blends with poly(3-hydroxybutyrate-co- 4-hydroxybutyrate). Polym Compos 33:850–859

    Article  CAS  Google Scholar 

  39. Li Y, Li Y, Han C, Yu Y, Xiao L (2019) Morphology and properties in the binary blends of polypropylene and propylene-ethylene random copolymers. Polym Bull 76:2851–2866

    Article  CAS  Google Scholar 

  40. Wei XF, Bao RY, Cao ZQ, Zhang LQ, Liu ZY, Yang W, Xue B, Yang M (2014) Greatly accelerated crystallization of poly(lactic acid): cooperative effect of stereocomplex crystallites and polyethylene glycol. Colloid Polym Sci 92:163–172

    Article  CAS  Google Scholar 

  41. Avrami M (1941) Granulation, phase change, and microstructure kinetics of phase change. III. J Chem Phys 9:177–184

    Article  CAS  Google Scholar 

  42. Tsuji H, Tezuka Y (2004) Stereocomplex formation between enantiomeric poly(lactic acid)s. 12. Spherulite growth of low-molecular-weight poly (lactic acid)s from the melt. Biomacromolecules 5:118181w-m

  43. Shibata M, Teramoto N, Inoue Y (2007) Mechanical properties, morphologies, and crystallization behavior of plasticized poly(L-lactide)/poly(butylene succinate-co- L-lactate) blends. Polymer 48:2768–2777

    Article  CAS  Google Scholar 

  44. Zhang C, Zhai T, Turng LS, Dan Y (2015) The morphological, mechanical, and crystallization behavior of polylactide/polycaprolactone blends compatibilized by L-lactide/caprolactone copolymer. Ind Eng Chem Res 54:9505–9511

    Article  CAS  Google Scholar 

  45. Wu D, Zhang Y, Zhang M, Wu L (2007) Morphology, nonisothermal crystallization behavior, and kinetics of poly(phenylene sulfide)/polycarbonate blend. J Appl Polym Sci 105:739–748

    Article  CAS  Google Scholar 

  46. Jiang N, Abe H (2015) Crystallization and melting behavior of partially miscible six-armed poly(L-lactic acid)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) blends. J Appl Polym Sci 42548

  47. Li Y, Li Y, Han C, Yu Y, Xiao L (2019) Morphology and properties in the binary blends of polypropylene and propylene-ethylene random copolymers. Polym Bull 76:2851–2866

    Article  CAS  Google Scholar 

  48. Chen HL, Liaw DJ, Liaw BY, Shih CL, Tsai JS (1998) Compatibility and crystallization studies on poly(phenyl acetylene)/polycaprolactone blend. Polym J 30:874–878

    Article  CAS  Google Scholar 

  49. Zhang G, Zhang J, Wang S, Shen D (2003) Miscibility and phase structure of binary blends of polylactide and poly(methyl methacrylate). J Polym Sci Polym Phys 41:23–30

    Article  CAS  Google Scholar 

  50. Shi K, Liu Y, Hu X, Su T, Li P, Wang Z (2018) Preparation, characterization, and biodegradation of poly(butylene succinate)/cellulose triacetate blends. Int J Biol Macromol 114:373–380

    Article  CAS  PubMed  Google Scholar 

  51. Zhu W, Wang X, Chen X, Xu K (2009) Miscibility, crystallization, and mechanical properties of poly(3-hydroxybutyrate-co-4-hydroxybutyrate)/poly(butylene succinate) blends. J Appl Polym Sci 114:3923–3931

    Article  CAS  Google Scholar 

  52. Shenoy AV (1999) Rheology of filled polymer systems. Springer, Netherlands, p 90

    Book  Google Scholar 

  53. Han CD, Ki JK (1993) On the use of time-temperature superposition in multicomponent/multiphase polymer systems. Polymer 34:2533–2539

    Article  CAS  Google Scholar 

  54. Jafari SH, Hesabi MN, Khonakdar HA, Asl-Rahimi M (2011) Correlation of rheology and morphology and estimation of interfacial tension of immiscible COC/EVA blends. J Polym Res 18:821–831

    Article  CAS  Google Scholar 

  55. Hemsri S, Thongpin C, Moradokpermpoon N, Niramon P, Suppaso M (2015) Mechanical properties and thermal stability of poly(butylene succinate)/acrylonitrile butadiene rubber blend. Macromol Symp 354:145–154

    Article  CAS  Google Scholar 

  56. Yun IS, Hwang SW, Shim JK, Seo KH (2016) A study on the thermal and mechanical properties of poly (butylene succinate)/thermoplastic starch binary blends. Int J of Pr Eng Man-GT 3:289–296

    Google Scholar 

  57. Ostrowska J, Sadurski W, Paluch M, Tyński P, Bogusz J (2019) The effect of poly(butylene succinate) content on the structure, thermal and mechanical properties of its blends with polylactide. Polym Int 68:1271–1279

    Article  CAS  Google Scholar 

Download references

Funding

This work is financially supported by the Chinese Academy of science and technology service network planning (KFJ-STS-QYZD-140), a program of Zhongshan Science and Technology Bureau (2017A1037), Innovation team project of Beijing Institute of Science and Technology (IG201703N), and “13th five-year” Science and Technology Research Program of the Education Department of Jilin Province (JJKH20190862KJ).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changyu Han or Liguang Xiao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Han, C., Xiao, L. et al. Miscibility, morphology, and properties of poly(butylene succinate)/poly(vinyl acetate) blends. Colloid Polym Sci 299, 105–116 (2021). https://doi.org/10.1007/s00396-020-04773-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04773-7

Keywords

Navigation