Skip to main content
Log in

Crystallization of poly(l-lactide) in the miscible poly(l-lactide)/poly(vinyl acetate) blend induced by carbon nanotubes

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this work, carbon nanotubes (CNTs) were introduced into miscible poly(l-lactide)/poly(vinyl acetate) (PLLA/PVAc) blend and the crystallization behaviors of PLLA with the presence of PVAc and CNTs are systematically discussed. The dispersion state of CNTs was characterized using scanning electron microscope, and the crystallization behaviors of PLLA in different conditions including melt crystallization and cold crystallization were comparatively investigated using polarized optical microscope, differential scanning calorimetry and wide angle X-ray diffraction. The results showed that the crystallization of PLLA was greatly restricted by PVAc. CNTs exhibit apparent nucleation effect, promoting the occurrence of both melt crystallization and cold crystallization. However, the nucleation effect of CNTs in the ternary composites is weakened as compared with that in the binary PLLA/CNTs composites. It was suggested that the relatively higher interfacial affinity between PVAc and CNTs, which possibly resulted in more PVAc molecule rather than PLLA molecule around the surface of CNTs, was the main reason for the reduced nucleation efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aruas R, Harte B, Selke S (2004) An overview of polylactides as packing materials. Macromol Biosci 4:835–864

    Article  CAS  Google Scholar 

  2. Zhang M, Thomas NL (2011) Blending polylactic acid with polyhydroxybutyrate: the effect on thermal, mechanical, and biodegradation properties. Adv Polym Technol 30:67–79

    Article  CAS  Google Scholar 

  3. Ikada Y, Tsuji H (2000) Biodegradable polyesters for medical and ecological applications. Macromol Rapid Commun 21:117–132

    Article  CAS  Google Scholar 

  4. Sakai F, Nishikawa K, Inoue Y, Yazawa K (2009) Nucleation enhancement effect in poly(l-lactide) (PLLA)/poly(ε-caprolactone) (PCL) blend induced by locally activated chain mobility resulting from limited miscibility. Macromolecules 42:8335–8342

    Article  CAS  Google Scholar 

  5. Nijenhuis AJ, Colstee E, Grijpma DW, Pennings AJ (1996) High molecular weight poly(l-lactide) and poly(ethylene oxide) blends: thermal characterization and physical properties. Polymer 37:5849–5857

    Article  CAS  Google Scholar 

  6. Anderson KS, Lim SH, Hillmyer MA (2003) Toughening of polylactide by melt blending with linear low-density polyethylene. J Appl Polym Sci 89:3757–3768

    Article  CAS  Google Scholar 

  7. Yokohara T, Yamaguchi M (2008) Structure and properties for biomass-based polyester blends of PLA and PBS. Eur Polym J 44:677–685

    Article  CAS  Google Scholar 

  8. Tsuji H, Ikada Y (1995) Properties and morphologies of poly(l-lactide) 1.annealing condition effects on properties and morphologies of poly(l-lactide). Polymer 36:2709–2716

    Article  CAS  Google Scholar 

  9. Ishida S, Nagasaki R, Chino K, Dong T, Inoue Y (2009) Toughening of poly(l-lactide) by blending with rubbers. J Appl Polym Sci 113:558–566

    Article  CAS  Google Scholar 

  10. Afrifah KA, Matuana LM (2010) Impact modification of polylactide with a biodegradable ethylene/acrylate copolymer. Macromol Mater Eng 295:802–811

    Article  CAS  Google Scholar 

  11. Hashima K, Nishitsuji S, Inoue T (2010) Structure-properties of super-tough PLA alloy with excellent heat resistance. Polymer 51:3934–3939

    Article  CAS  Google Scholar 

  12. Liu HZ, Chen F, Liu B, Estep G, Zhang JW (2010) Super toughened poly(lactic acid) ternary blends by simultaneous dynamic vulcanization and interfacial compatibilization. Macromolecules 43:6058–6066

    Article  CAS  Google Scholar 

  13. Ma P, Hristova-Bogaerds DG, Goossens JGP, Spoelstra AB, Zhang Y, Lemstra PJ (2012) Toughening of poly(lactic acid) by ethylene-co-vinyl acetate copolymer with different vinyl acetate contents. Eur Polym J 48:146–154

    Article  CAS  Google Scholar 

  14. Fu Y, Liao L, Yang L, Lan Y, Mei L, Liu Y, Hu S (2013) Molecular dynamics and dissipative particle dynamics simulations for prediction of miscibility in polyethylene terephthalate/polylactide blends. Mol Simul 39:415–422

    Article  CAS  Google Scholar 

  15. Lee JB, Lee YK, Choi GD, Na SW, Park TS, Kim WN (2011) Compatibilizing effects for improving mechanical properties of biodegradable poly (lactic acid) and polycarbonate blends. Polym Degrad Stab 96:553–560

    Article  CAS  Google Scholar 

  16. Tsuji H, Sawada M, Bouapao L (2009) Biodegradable polyesters as crystallization-accelerating agents of poly(l-lactide). ACS Appl Mater Inter 1:1719–1730

    Article  CAS  Google Scholar 

  17. Gajria AM, Davé V, Gross RA, McCarthy SP (1996) Miscibility and biodegradability of blends of poly(lactic acid) and poly(vinyl acetate). Polymer 37:437–444

    Article  CAS  Google Scholar 

  18. Li Y, You J (2011) Micro-phase separation and crystallization behavior of amorphous oriented PLLA/PVAc blends during heat treatment under strain. Polymer 52:2964–2969

    Article  CAS  Google Scholar 

  19. Zhang GB, Zhang JM, Wang SG, Shen DY (2003) Miscibility and phase structure of binary blends of polylactide and poly(methyl methacrylate). J Polym Sci Part B Polym Phys 41:23–30

    Article  CAS  Google Scholar 

  20. Shirahase T, Komatsu Y, Tominaga Y, Asai S, Sumita M (2006) Miscibility and hydrolytic degradation in alkaline solution of poly(l-lactide) and poly(methyl methacrylate) blends. Polymer 47:4839–4844

    Article  CAS  Google Scholar 

  21. Shirahase T, Komatsu Y, Marubayashi H, Tominaga Y, Asai S, Sumita M (2007) Miscibility and hydrolytic degradation in alkaline solution of poly(l-lactide) and poly(p-vinyl phenol) blends. Polym Degrad Stab 92:1626–1631

    Article  CAS  Google Scholar 

  22. Li YL, Wang Y, Han L, Xiang FM, Zhou ZW (2009) Crystallization improvement of poly(l-lactide) induced by functionalized multiwalled carbon nanotubes. J Polym Sci Part B Polym Phys 47:326–339

    Article  CAS  Google Scholar 

  23. Xu ZH, Niu YH, Wang ZG, Li H, Yang L, Qiu J, Wang H (2011) Enhanced nucleation rate of polylactide in composites assisted by surface acid oxidized carbon nanotubes of different aspect ratios. ACS Appl Mater Interfaces 3:3744–3753

    Article  CAS  PubMed  Google Scholar 

  24. Xu JZ, Chen T, Yang CL, Li ZM, Mao YM, Zeng BQ, Hsiao BS (2010) Isothermal crystallization of poly(l-lactide) induced by graphene nanosheets and carbon nanotubes: a comparative study. Macromolecules 43:5000–5008

    Article  CAS  Google Scholar 

  25. Tao F, Nysten B, Baudouin AC, Thomassin JM, Vuluga D, Detrembleur C, Bailly C (2011) Influence of nanoparticle–polymer interactions on the apparent migration behaviour of carbon nanotubes in an immiscible polymer blend. Polymer 52:4798–4805

    Article  CAS  Google Scholar 

  26. Gao Y, Wang Y, Shi J, Bai HW, Song B (2008) Functionalized multi-walled carbon nanotubes improve nonisothermal crystallization of poly(ethylene terephthalate). Polym Test 27:179–188

    Article  CAS  Google Scholar 

  27. Fischer EW, Sterzel HJ, Wegber G (1973) Investigation of the structure of solution grown crystals of lactide copolymers by chemical reactions. Kolloid ZZ Polym 251:980–990

    Article  CAS  Google Scholar 

  28. Kulinski Z, Piorkowska E (2005) Crystallization, structure and properties of plasticized poly(l-lactide). Polymer 46:10290–10300

    Article  CAS  Google Scholar 

  29. Li YL, Wu HY, Wang Y, Liu L, Han L, Wu J, Xiang FM (2010) Synergistic effects of PEG and MWCNTs on crystallization behavior of PLLA. J Polym Sci Part B Polym Phys 48:520–528

    Article  CAS  Google Scholar 

  30. Wu DF, Wu L, Zhou WD, Sun YR, Zhang M (2010) Relations between the aspect ratio of carbon nanotubes and the formation of percolation networks in biodegradable polylactide/carbon nanotube composites. J Polym Sci Part B Polym Phys 48:479–489

    Article  CAS  Google Scholar 

  31. Wu S (1982) Polymer interface and adhesion. Marcel Dekker Inc., New York

    Google Scholar 

  32. Nuriel S, Liu L, Barber AH, Wagner HD (2005) Direct measurement of multiwall nanotube surface tension. Chem Phys Lett 404:263–266

    Article  CAS  Google Scholar 

  33. Fowkes FM (1962) Determination of interfacial tensions, contact angles, and dispersion forces in surfaces by assuming additivity of intermolecular interactions in surfaces. J Phys Chem 66:382–389

    Article  CAS  Google Scholar 

  34. Owens DK, Wendt RC (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13:1741–1747

    Article  CAS  Google Scholar 

  35. Dalai EN (1987) Calculation of solid surface tensions. Langmuir 3:1009–1015

    Article  Google Scholar 

Download references

Acknowledgements

Authors express their sincere thanks to the National Natural Science Foundation of China (51473137) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing-hui Yang or Yong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, T., Yang, Jh., Zhang, N. et al. Crystallization of poly(l-lactide) in the miscible poly(l-lactide)/poly(vinyl acetate) blend induced by carbon nanotubes. Polym. Bull. 75, 2641–2655 (2018). https://doi.org/10.1007/s00289-017-2171-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2171-3

Keywords

Navigation