Skip to main content
Log in

Surface interaction induced transcrystallization in biodegradable poly(butylene succinate)-fibre composites

  • Short Communication
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The growth of transcrystallines of poly(butylene succinate)(PBS) induced by organic and inorganic fibres was investigated mainly with optical microscopy and DSC. The formation of transcrystallinity on the surface of polyester and polyamide fibres revealed that strong interactions between fibre and matrix molecules were the key factor determining the formation of TC structure in PBS/fibre systems. In addition, the results of DSC proved that the acceleration of nucleation rate by fibres plays an important role in the formation of PBS transcrystallinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Jenckel E, Teeger E, Hinrichs W (1952) Transkristallisaztion in hochmolekularen stoffen. Kolloid Z 129:19–24

    Article  CAS  Google Scholar 

  2. Zhang SJ, Minus ML, Zhu LB, Wong CP, Kumar S (2008) Polymer transcrystallinity induced by carbon nanotubes. Polymer 49:1356–1364

    Article  CAS  Google Scholar 

  3. Gray DG (2008) Transcrystallization of polypropylene at cellulose nanocrystal surfaces. Cellulose 15:297–301

    Article  CAS  Google Scholar 

  4. Shi HF, Zhao Y, Dong X, He CC, Wang DJ, Xu DF (2004) Transcrystalline morphology of nylon 6 on the surface of aramid fibers. Polym Int 53:1672–1676

    Article  CAS  Google Scholar 

  5. Quan H, Li ZM, Yang MB, Huang R (2005) On transcrystallinity in semi-crystalline polymer composites. Compos Sci Technol 65:999–1021

    Article  CAS  Google Scholar 

  6. Ninomiya N, Kato K, Fujimori A, Masuko R (2007) Transcrystalline structures of poly(l-actide). Polymer 48:4874–4882

    Article  CAS  Google Scholar 

  7. Liang Y, Liu SY, Dai K, Wang B, Shao C, Zhang QX, et al (2012) Transcrystallization in nanofiber bundle/isotactic polypropylene composites: effect of matrix molecular weight. Colloid Polym Sci 290:1157–1164

    Article  CAS  Google Scholar 

  8. Li ZM, Li LB, Shen KZ, Yang W, Huang R, Yang MB (2004) Transcrystalline morphology of an in situ microfibrillar poly(ethylene terephthalate)/poly(propylene) blend fabricated through a slit extrusion hot stretching-quenching process. Macromol Rapid Commun 25:553–558

    Article  Google Scholar 

  9. Zhou M, Xu SM, Li YH, He C, Jin TX, Wang K, et al (2014) Transcrystalline formation and properties of polypropylene on the surface of ramie fiber as induced by shear or dopamine modification. Polymer 55:3045–3053

    Article  CAS  Google Scholar 

  10. Li Y, Xu JT, Wei ZY, Xu YQ, Song P, Chen GY, et al (2014) Mechanical properties and nonisothermal crystallization of polyamide 6/carbon fiber composites toughened by maleated elastomers. Polym Compos 35:2170–2179

    Article  CAS  Google Scholar 

  11. Feldman AY, Fernanda GM, Wachtel E, Moret MP, Marom G (2004) Transcrystallinity in aramid and carbon fiber reinforced nylon 66: determining the lamellar orientation by synchrotron X-ray micro diffraction. Polymer 45:7239–7245

    Article  CAS  Google Scholar 

  12. He CC, Dong X, Zhang XQ, Wang DJ, Xu DF (2004) Morphology investigation of transcrystallinity at polyamide 66/aramid fiber inter face. J Appl Polym Sci 91:2980–2983

    Article  CAS  Google Scholar 

  13. Jeng CC, Chen M (2000) Flexural failure mechanisms in injection-moulded carbon fibre/PEEK composites. Compos Sci Technol 60:1863–1872

    Article  CAS  Google Scholar 

  14. Korbakov N, Harel H, Feldman Y, Marom G (2002) Dielectric-response of aramid fiber-reinforced PEEK. Macromol Chem Phys 203:2267–2272

    Article  CAS  Google Scholar 

  15. Le Duigou A, Davies P, Baley C (2010) Interfacial bonding of flax fibre/poly(L-lactide) bio-composites. Compos Sci Technol 70:231–239

    Article  Google Scholar 

  16. Hermida EB, Mega VI (2007) Transcrystallization kinetics at the poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/hemp fibre interface. Compos A: Appl Sci Manuf 38:1387–1394

    Article  Google Scholar 

  17. Xu J, Guo BH (2010) Poly(butylene succinate) and its copolymers: research, development and industrialization. Biotechnol J 5:1149–1163

    Article  CAS  Google Scholar 

  18. Lin CW, Lai YC, Liu SS (2001) Effect of the surface roughness of sulfuric acid-anodized aluminum mold on the interfacial crystallization behavior of isotactic polypropylene. J Adhes Sci Technol 15:929–944

    Article  CAS  Google Scholar 

  19. Jose ET, Joseph A, Skrifvars M, Thomas S, Joseph K (2010) Thermal and crystallization behavior of cotton-polypropylene commingled composite systems. Polym Compos 31:1487–1494

    Google Scholar 

  20. Li HH, Yan SK (2011) Surface-induced polymer crystallization and the resultant structures and morphologies. Macromolecules 44:417–428

    Article  CAS  Google Scholar 

  21. Grozdanov A, Bogoeva-Gaceva G (2003) Transcrystallization of maleated polypropylene in the presence of various carbon fibers. Polym Bull 50:397–404

    Article  CAS  Google Scholar 

  22. Yu T, Wu CM, Chang CY, Wang CY, Rwei SP (2012) Effects of crystalline morphologies on the mechanical properties of carbon fiber reinforcing polymerized cyclic butylene terephthalate composites. Express Polym Lett 6:318–328

    Article  CAS  Google Scholar 

  23. Wang C, Chen CC (1999) Surface-induced crystallization of syndiotactic polystyrene on high modulus carbon fibers. Polym Bull 43(4–5):433–440

    Article  CAS  Google Scholar 

  24. Wang C, Hwang LM (1996) Transcrystallization of PTFE fiber/PP composites (I) crystallization kinetics and morphology. J Polym Sci B Polym Phys 34:47–56

    Article  CAS  Google Scholar 

  25. Wang C, Liu CR (1999) Transcrystallization of polypropylene composites: nucleating ability of fibres. Polymer 40:289–298

    Article  Google Scholar 

  26. Xu H, Xie L, Jiang X, Li XJ, Li Y, Zhang ZJ, Zhong GJ, Li ZM (2014) Toward stronger transcrystalline layers in poly(L-lactic acid)/natural fiber biocomposites with the aid of an accelerator of chain mobility. J Phys Chem B 118:812–823

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professor Charles Han of Institute of Chemistry, CAS for providing some advice. Financial support was provided by the National Natural Science Foundation of China (Project No. 51103170 and 51473175), by the National Technology Research and Development Program of China (863 Program) (Project No. 2011AA02A203).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pingli Wang or Junhui Ji.

Electronic supplementary material

ESM 1

(DOC 220 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Tian, Y., Wang, G. et al. Surface interaction induced transcrystallization in biodegradable poly(butylene succinate)-fibre composites. Colloid Polym Sci 293, 2701–2707 (2015). https://doi.org/10.1007/s00396-015-3690-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3690-9

Keywords

Navigation