Skip to main content

Advertisement

Log in

Myocardial apoptosis in heart disease: does the emperor have clothes?

  • Review
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Since the discovery of a novel mechanism of cell death that differs from traditional necrosis, i.e., apoptosis, there have been numerous studies concluding that increased apoptosis augments myocardial infarction and heart failure and that limiting apoptosis protects the heart. Importantly, the vast majority of cells in the heart are non-myocytes with only roughly 30 % myocytes, yet almost the entire field studying apoptosis in the heart has disregarded non-myocyte apoptosis, e.g., only 4.7 % of 423 studies on myocardial apoptosis in the past 3 years quantified non-myocyte apoptosis. Accordingly, we reviewed the history of apoptosis in the heart focusing first on myocyte apoptosis, followed by the history of non-myocyte apoptosis in myocardial infarction and heart failure. Apoptosis of several of the major non-myocyte cell types in the heart (cardiac fibroblasts, endothelial cells, vascular smooth muscle cells, macrophages and leukocytes) may actually be responsible for affecting the severity of myocardial infarction and heart failure. In summary, even though it is now known that the majority of apoptosis in the heart occurs in non-myocytes, very little work has been done to elucidate the mechanisms by which non-myocyte apoptosis might be responsible for the adverse effects of apoptosis in myocardial infarction and heart failure. The goal of this review is to provide an impetus for future work in this field on non-myocyte apoptosis that will be required for a better understanding of the role of apoptosis in the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abrial M, Da Silva CC, Pillot B, Augeul L, Ivanes F, Teixeira G, Cartier R, Angoulvant D, Ovize M, Ferrera R (2014) Cardiac fibroblasts protect cardiomyocytes against lethal ischemia-reperfusion injury. J Mol Cell Cardiol 68:56–65. doi:10.1016/j.yjmcc.2014.01.005

    Article  CAS  PubMed  Google Scholar 

  2. Andersen HC (1837) The emperor’s new clothes. C. A. Reitzel, Copenhagen

    Google Scholar 

  3. Anversa P, Nadal-Ginard B (2002) Myocyte renewal and ventricular remodelling. Nature 415:240–243. doi:10.1038/415240a

    Article  CAS  PubMed  Google Scholar 

  4. Aurora AB, Porrello ER, Tan W, Mahmoud AI, Hill JA, Bassel-Duby R, Sadek HA, Olson EN (2014) Macrophages are required for neonatal heart regeneration. J Clin Investig 124:1382–1392. doi:10.1172/JCI72181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bahi N, Zhang J, Llovera M, Ballester M, Comella JX, Sanchis D (2006) Switch from caspase-dependent to caspase-independent death during heart development: essential role of endonuclease G in ischemia-induced DNA processing of differentiated cardiomyocytes. J Biol Chem 281:22943–22952. doi:10.1074/jbc.M601025200

    Article  CAS  PubMed  Google Scholar 

  6. Baldi A, Abbate A, Bussani R, Patti G, Melfi R, Angelini A, Dobrina A, Rossiello R, Silvestri F, Baldi F, Di Sciascio G (2002) Apoptosis and post-infarction left ventricular remodeling. J Mol Cell Cardiol 34:165–174. doi:10.1006/jmcc.2001.1498

    Article  CAS  PubMed  Google Scholar 

  7. Bauersachs J, Bouloumie A, Fraccarollo D, Hu K, Busse R, Ertl G (1999) Endothelial dysfunction in chronic myocardial infarction despite increased vascular endothelial nitric oxide synthase and soluble guanylate cyclase expression: role of enhanced vascular superoxide production. Circulation 100:292–298

    Article  CAS  PubMed  Google Scholar 

  8. Baum J, Duffy HS (2011) Fibroblasts and myofibroblasts: what are we talking about? J Cardiovasc Pharmacol 57:376–379. doi:10.1097/FJC.0b013e3182116e39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Baxter GF (2002) The neutrophil as a mediator of myocardial ischemia-reperfusion injury: time to move on. Basic Res Cardiol 97:268–275. doi:10.1007/s00395-002-0366-7

    Article  PubMed  Google Scholar 

  10. Beltrami AP, Urbanek K, Kajstura J, Yan SM, Finato N, Bussani R, Nadal-Ginard B, Silvestri F, Leri A, Beltrami CA, Anversa P (2001) Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 344:1750–1757. doi:10.1056/NEJM200106073442303

    Article  CAS  PubMed  Google Scholar 

  11. Benjamin IJ, Jalil JE, Tan LB, Cho K, Weber KT, Clark WA (1989) Isoproterenol-induced myocardial fibrosis in relation to myocyte necrosis. Circ Res 65:657–670

    Article  CAS  PubMed  Google Scholar 

  12. Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisen J (2009) Evidence for cardiomyocyte renewal in humans. Science 324:98–102. doi:10.1126/science.1164680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bialik S, Geenen DL, Sasson IE, Cheng R, Horner JW, Evans SM, Lord EM, Koch CJ, Kitsis RN (1997) Myocyte apoptosis during acute myocardial infarction in the mouse localizes to hypoxic regions but occurs independently of p53. J Clin Investig 100:1363–1372. doi:10.1172/JCI119656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bing OH (1994) Hypothesis: apoptosis may be a mechanism for the transition to heart failure with chronic pressure overload. J Mol Cell Cardiol 26:943–948. doi:10.1006/jmcc.1994.1115

    Article  CAS  PubMed  Google Scholar 

  15. Brutsaert DL (2003) Cardiac endothelial-myocardial signaling: its role in cardiac growth, contractile performance, and rhythmicity. Physiol Rev 83:59–115. doi:10.1152/physrev.00017.2002

    Article  CAS  PubMed  Google Scholar 

  16. Cai L, Wang Y, Zhou G, Chen T, Song Y, Li X, Kang YJ (2006) Attenuation by metallothionein of early cardiac cell death via suppression of mitochondrial oxidative stress results in a prevention of diabetic cardiomyopathy. J Am Coll Cardiol 48:1688–1697. doi:10.1016/j.jacc.2006.07.022

    Article  CAS  PubMed  Google Scholar 

  17. Canbay A, Friedman S, Gores GJ (2004) Apoptosis: the nexus of liver injury and fibrosis. Hepatology 39:273–278. doi:10.1002/hep.20051

    Article  PubMed  Google Scholar 

  18. Cesselli D, Jakoniuk I, Barlucchi L, Beltrami AP, Hintze TH, Nadal-Ginard B, Kajstura J, Leri A, Anversa P (2001) Oxidative stress-mediated cardiac cell death is a major determinant of ventricular dysfunction and failure in dog dilated cardiomyopathy. Circ Res 89:279–286

    Article  CAS  PubMed  Google Scholar 

  19. Chandrashekhar Y, Sen S, Anway R, Shuros A, Anand I (2004) Long-term caspase inhibition ameliorates apoptosis, reduces myocardial troponin-I cleavage, protects left ventricular function, and attenuates remodeling in rats with myocardial infarction. J Am Coll Cardiol 43:295–301

    Article  CAS  PubMed  Google Scholar 

  20. Chatelain P, Latour JG, Tran D, de Lorgeril M, Dupras G, Bourassa M (1987) Neutrophil accumulation in experimental myocardial infarcts: relation with extent of injury and effect of reperfusion. Circulation 75:1083–1090

    Article  CAS  PubMed  Google Scholar 

  21. Chen YW, Pat B, Gladden JD, Zheng J, Powell P, Wei CC, Cui X, Husain A, Dell’italia LJ (2011) Dynamic molecular and histopathological changes in the extracellular matrix and inflammation in the transition to heart failure in isolated volume overload. Am J Physiol Heart Circ Physiol 300:H2251–H2260. doi:10.1152/ajpheart.01104.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cheng W, Kajstura J, Nitahara JA, Li B, Reiss K, Liu Y, Clark WA, Krajewski S, Reed JC, Olivetti G, Anversa P (1996) Programmed myocyte cell death affects the viable myocardium after infarction in rats. Exp Cell Res 226:316–327. doi:10.1006/excr.1996.0232

    Article  CAS  PubMed  Google Scholar 

  23. Cheng W, Li B, Kajstura J, Li P, Wolin MS, Sonnenblick EH, Hintze TH, Olivetti G, Anversa P (1995) Stretch-induced programmed myocyte cell death. J Clin Investig 96:2247–2259. doi:10.1172/JCI118280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cohen I, Rider P, Carmi Y, Braiman A, Dotan S, White MR, Voronov E, Martin MU, Dinarello CA, Apte RN (2010) Differential release of chromatin-bound IL-1alpha discriminates between necrotic and apoptotic cell death by the ability to induce sterile inflammation. Proc Natl Acad Sci USA 107:2574–2579. doi:10.1073/pnas.0915018107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Condorelli G, Roncarati R, Ross J Jr, Pisani A, Stassi G, Todaro M, Trocha S, Drusco A, Gu Y, Russo MA, Frati G, Jones SP, Lefer DJ, Napoli C, Croce CM (2001) Heart-targeted overexpression of caspase3 in mice increases infarct size and depresses cardiac function. Proc Natl Acad Sci USA 98:9977–9982. doi:10.1073/pnas.161120198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cotter TG (2009) Apoptosis and cancer: the genesis of a research field. Nat Rev Cancer 9:501–507. doi:10.1038/nrc2663

    Article  CAS  PubMed  Google Scholar 

  27. Cronstein BN, Levin RI, Belanoff J, Weissmann G, Hirschhorn R (1986) Adenosine: an endogenous inhibitor of neutrophil-mediated injury to endothelial cells. J Clin Investig 78:760–770. doi:10.1172/JCI112638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Crow MT, Mani K, Nam YJ, Kitsis RN (2004) The mitochondrial death pathway and cardiac myocyte apoptosis. Circ Res 95:957–970. doi:10.1161/01.RES.0000148632.35500.d9

    Article  CAS  PubMed  Google Scholar 

  29. Cummins NW, Badley AD (2010) Mechanisms of HIV-associated lymphocyte apoptosis: 2010. Cell Death Dis 1:e99. doi:10.1038/cddis.2010.77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Curtis MJ, Pugsley MK, Walker MJ (1993) Endogenous chemical mediators of ventricular arrhythmias in ischaemic heart disease. Cardiovasc Res 27:703–719

    Article  CAS  PubMed  Google Scholar 

  31. da Costa Martins PA, De Windt LJ (2008) Nix: the cardiac Styx between life and death. Circulation 117:338–340. doi:10.1161/CIRCULATIONAHA.107.750125

    Article  PubMed  Google Scholar 

  32. Davidson SM, Duchen MR (2007) Endothelial mitochondria: contributing to vascular function and disease. Circ Res 100:1128–1141. doi:10.1161/01.RES.0000261970.18328.1d

    Article  CAS  PubMed  Google Scholar 

  33. de Moissac D, Gurevich RM, Zheng H, Singal PK, Kirshenbaum LA (2000) Caspase activation and mitochondrial cytochrome C release during hypoxia-mediated apoptosis of adult ventricular myocytes. J Mol Cell Cardiol 32:53–63. doi:10.1006/jmcc.1999.1057

    Article  CAS  PubMed  Google Scholar 

  34. Desmouliere A, Redard M, Darby I, Gabbiani G (1995) Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am J Pathol 146:56–66

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Diwan A, Wansapura J, Syed FM, Matkovich SJ, Lorenz JN, Dorn GW 2nd (2008) Nix-mediated apoptosis links myocardial fibrosis, cardiac remodeling, and hypertrophy decompensation. Circulation 117:396–404. doi:10.1161/CIRCULATIONAHA.107.727073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dobaczewski M, Gonzalez-Quesada C, Frangogiannis NG (2010) The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction. J Mol Cell Cardiol 48:504–511. doi:10.1016/j.yjmcc.2009.07.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dong Q, Chen L, Lu Q, Sharma S, Li L, Morimoto S, Wang G (2014) Quercetin attenuates doxorubicin cardiotoxicity by modulating Bmi-1 expression. Br J Pharmacol 171:4440–4454. doi:10.1111/bph.12795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Duran JM, Makarewich CA, Trappanese D, Gross P, Husain S, Dunn J, Lal H, Sharp TE, Starosta T, Vagnozzi RJ, Berretta RM, Barbe M, Yu D, Gao E, Kubo H, Force T, Houser SR (2014) Sorafenib cardiotoxicity increases mortality after myocardial infarction. Circ Res 114:1700–1712. doi:10.1161/CIRCRESAHA.114.303200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Eilat E, Mendlovic S, Doron A, Zakuth V, Spirer Z (1999) Increased apoptosis in patients with major depression: a preliminary study. J Immunol 163:533–534 (ji_v163n1p533 [pii])

    CAS  PubMed  Google Scholar 

  40. Entman ML, Youker K, Shoji T, Kukielka G, Shappell SB, Taylor AA, Smith CW (1992) Neutrophil induced oxidative injury of cardiac myocytes. A compartmented system requiring CD11b/CD18-ICAM-1 adherence. J Clin Investig 90:1335–1345. doi:10.1172/JCI115999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Favre J, Terborg N, Horrevoets AJ (2013) The diverse identity of angiogenic monocytes. Eur J Clin Invest 43:100–107. doi:10.1111/eci.12009

    Article  PubMed  Google Scholar 

  42. Finkel MS, Hoffman RA, Shen L, Oddis CV, Simmons RL, Hattler BG (1993) Interleukin-6 (IL-6) as a mediator of stunned myocardium. Am J Cardiol 71:1231–1232

    Article  CAS  PubMed  Google Scholar 

  43. Fliss H, Gattinger D (1996) Apoptosis in ischemic and reperfused rat myocardium. Circ Res 79:949–956

    Article  CAS  PubMed  Google Scholar 

  44. Frantz S, Hofmann U, Fraccarollo D, Schafer A, Kranepuhl S, Hagedorn I, Nieswandt B, Nahrendorf M, Wagner H, Bayer B, Pachel C, Schon MP, Kneitz S, Bobinger T, Weidemann F, Ertl G, Bauersachs J (2013) Monocytes/macrophages prevent healing defects and left ventricular thrombus formation after myocardial infarction. FASEB J 27:871–881. doi:10.1096/fj.12-214049

    Article  CAS  PubMed  Google Scholar 

  45. Frantz S, Nahrendorf M (2014) Cardiac macrophages and their role in ischaemic heart disease. Cardiovasc Res 102:240–248. doi:10.1093/cvr/cvu025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Freude B, Masters TN, Robicsek F, Fokin A, Kostin S, Zimmermann R, Ullmann C, Lorenz-Meyer S, Schaper J (2000) Apoptosis is initiated by myocardial ischemia and executed during reperfusion. J Mol Cell Cardiol 32:197–208. doi:10.1006/jmcc.1999.1066

    Article  CAS  PubMed  Google Scholar 

  47. Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493–501

    Article  CAS  PubMed  Google Scholar 

  48. Gottlieb RA, Burleson KO, Kloner RA, Babior BM, Engler RL (1994) Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Investig 94:1621–1628. doi:10.1172/JCI117504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gottlieb RA, Gruol DL, Zhu JY, Engler RL (1996) Preconditioning rabbit cardiomyocytes: role of pH, vacuolar proton ATPase, and apoptosis. J Clin Investig 97:2391–2398. doi:10.1172/JCI118683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Guicciardi ME, Gores GJ (2005) Apoptosis: a mechanism of acute and chronic liver injury. Gut 54:1024–1033. doi:10.1136/gut.2004.053850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gwechenberger M, Mendoza LH, Youker KA, Frangogiannis NG, Smith CW, Michael LH, Entman ML (1999) Cardiac myocytes produce interleukin-6 in culture and in viable border zone of reperfused infarctions. Circulation 99:546–551

    Article  CAS  PubMed  Google Scholar 

  52. Hallstrom S, Franz M, Gasser H, Vodrazka M, Semsroth S, Losert UM, Haisjackl M, Podesser BK, Malinski T (2008) S-Nitroso human serum albumin reduces ischaemia/reperfusion injury in the pig heart after unprotected warm ischaemia. Cardiovasc Res 77:506–514. doi:10.1093/cvr/cvm052

    Article  PubMed  CAS  Google Scholar 

  53. Harel-Adar T, Ben Mordechai T, Amsalem Y, Feinberg MS, Leor J, Cohen S (2011) Modulation of cardiac macrophages by phosphatidylserine-presenting liposomes improves infarct repair. Proc Natl Acad Sci USA 108:1827–1832. doi:10.1073/pnas.1015623108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Havasi A, Borkan SC (2011) Apoptosis and acute kidney injury. Kidney Int 80:29–40. doi:10.1038/ki.2011.120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hayakawa K, Takemura G, Kanoh M, Li Y, Koda M, Kawase Y, Maruyama R, Okada H, Minatoguchi S, Fujiwara T, Fujiwara H (2003) Inhibition of granulation tissue cell apoptosis during the subacute stage of myocardial infarction improves cardiac remodeling and dysfunction at the chronic stage. Circulation 108:104–109. doi:10.1161/01.CIR.0000074225.62168.68

    Article  PubMed  Google Scholar 

  56. Hayakawa K, Takemura G, Koda M, Kawase Y, Maruyama R, Li Y, Minatoguchi S, Fujiwara T, Fujiwara H (2002) Sensitivity to apoptosis signal, clearance rate, and ultrastructure of Fas ligand-induced apoptosis in in vivo adult cardiac cells. Circulation 105:3039–3045

    Article  CAS  PubMed  Google Scholar 

  57. Heidt T, Courties G, Dutta P, Sager HB, Sebas M, Iwamoto Y, Sun Y, Da Silva N, Panizzi P, van der Laan AM, Swirski FK, Weissleder R, Nahrendorf M (2014) Differential contribution of monocytes to heart macrophages in steady-state and after myocardial infarction. Circ Res 115:284–295. doi:10.1161/CIRCRESAHA.115.303567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hinz B, Phan SH, Thannickal VJ, Galli A, Bochaton-Piallat ML, Gabbiani G (2007) The myofibroblast: one function, multiple origins. Am J Pathol 170:1807–1816. doi:10.2353/ajpath.2007.070112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Itoh G, Tamura J, Suzuki M, Suzuki Y, Ikeda H, Koike M, Nomura M, Jie T, Ito K (1995) DNA fragmentation of human infarcted myocardial cells demonstrated by the nick end labeling method and DNA agarose gel electrophoresis. Am J Pathol 146:1325–1331

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Jaipersad AS, Lip GY, Silverman S, Shantsila E (2014) The role of monocytes in angiogenesis and atherosclerosis. J Am Coll Cardiol 63:1–11. doi:10.1016/j.jacc.2013.09.019

    Article  CAS  PubMed  Google Scholar 

  61. Jolly SR, Kane WJ, Hook BG, Abrams GD, Kunkel SL, Lucchesi BR (1986) Reduction of myocardial infarct size by neutrophil depletion: effect of duration of occlusion. Am Heart J 112:682–690

    Article  CAS  PubMed  Google Scholar 

  62. Jugdutt BI (2003) Ventricular remodeling after infarction and the extracellular collagen matrix: when is enough enough? Circulation 108:1395–1403. doi:10.1161/01.CIR.0000085658.98621.49

    Article  PubMed  Google Scholar 

  63. Jung K, Kim P, Leuschner F, Gorbatov R, Kim JK, Ueno T, Nahrendorf M, Yun SH (2013) Endoscopic time-lapse imaging of immune cells in infarcted mouse hearts. Circ Res 112:891–899. doi:10.1161/CIRCRESAHA.111.300484

    Article  CAS  PubMed  Google Scholar 

  64. Kaikita K, Hayasaki T, Okuma T, Kuziel WA, Ogawa H, Takeya M (2004) Targeted deletion of CC chemokine receptor 2 attenuates left ventricular remodeling after experimental myocardial infarction. Am J Pathol 165:439–447. doi:10.1016/S0002-9440(10)63309-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kajstura J, Cheng W, Reiss K, Clark WA, Sonnenblick EH, Krajewski S, Reed JC, Olivetti G, Anversa P (1996) Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab Invest 74:86–107

    CAS  PubMed  Google Scholar 

  66. Kajstura J, Leri A, Finato N, Di Loreto C, Beltrami CA, Anversa P (1998) Myocyte proliferation in end-stage cardiac failure in humans. Proc Natl Acad Sci USA 95:8801–8805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kawamoto A, Tkebuchava T, Yamaguchi J, Nishimura H, Yoon YS, Milliken C, Uchida S, Masuo O, Iwaguro H, Ma H, Hanley A, Silver M, Kearney M, Losordo DW, Isner JM, Asahara T (2003) Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia. Circulation 107:461–468

    Article  PubMed  Google Scholar 

  68. Kawano H, Okada R, Kawano Y, Sueyoshi N, Shirai T (1994) Apoptosis in acute and chronic myocarditis. Jpn Heart J 35:745–750

    Article  CAS  PubMed  Google Scholar 

  69. Kazakov A, Hall R, Jagoda P, Bachelier K, Muller-Best P, Semenov A, Lammert F, Bohm M, Laufs U (2013) Inhibition of endothelial nitric oxide synthase induces and enhances myocardial fibrosis. Cardiovasc Res 100:211–221. doi:10.1093/cvr/cvt181

    Article  CAS  PubMed  Google Scholar 

  70. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, Homma S, Edwards NM, Itescu S (2001) Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 7:430–436. doi:10.1038/86498

    Article  CAS  PubMed  Google Scholar 

  72. Krenning G, Zeisberg EM, Kalluri R (2010) The origin of fibroblasts and mechanism of cardiac fibrosis. J Cell Physiol 225:631–637. doi:10.1002/jcp.22322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Laflamme MA, Murry CE (2011) Heart regeneration. Nature 473:326–335. doi:10.1038/nature10147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lal H, Ahmad F, Zhou J, Yu JE, Vagnozzi RJ, Guo Y, Yu D, Tsai EJ, Woodgett J, Gao E, Force T (2014) Cardiac fibroblast glycogen synthase kinase-3beta regulates ventricular remodeling and dysfunction in ischemic heart. Circulation 130:419–430. doi:10.1161/CIRCULATIONAHA.113.008364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Landmesser U, Engberding N, Bahlmann FH, Schaefer A, Wiencke A, Heineke A, Spiekermann S, Hilfiker-Kleiner D, Templin C, Kotlarz D, Mueller M, Fuchs M, Hornig B, Haller H, Drexler H (2004) Statin-induced improvement of endothelial progenitor cell mobilization, myocardial neovascularization, left ventricular function, and survival after experimental myocardial infarction requires endothelial nitric oxide synthase. Circulation 110:1933–1939. doi:10.1161/01.CIR.0000143232.67642.7A

    Article  CAS  PubMed  Google Scholar 

  76. Laplante P, Sirois I, Raymond MA, Kokta V, Beliveau A, Prat A, Pshezhetsky AV, Hebert MJ (2010) Caspase-3-mediated secretion of connective tissue growth factor by apoptotic endothelial cells promotes fibrosis. Cell Death Differ 17:291–303. doi:10.1038/cdd.2009.124

    Article  CAS  PubMed  Google Scholar 

  77. Lee GJ, Yan L, Vatner DE, Vatner SF (2015) Mst1 inhibition rescues beta1-adrenergic cardiomyopathy by reducing myocyte necrosis and non-myocyte apoptosis rather than myocyte apoptosis. Basic Res Cardiol 110:7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Lefer DJ (2002) Do neutrophils contribute to myocardial reperfusion injury? Basic Res Cardiol 97:263–267

    Article  PubMed  Google Scholar 

  79. Leuschner F, Rauch PJ, Ueno T, Gorbatov R, Marinelli B, Lee WW, Dutta P, Wei Y, Robbins C, Iwamoto Y, Sena B, Chudnovskiy A, Panizzi P, Keliher E, Higgins JM, Libby P, Moskowitz MA, Pittet MJ, Swirski FK, Weissleder R, Nahrendorf M (2012) Rapid monocyte kinetics in acute myocardial infarction are sustained by extramedullary monocytopoiesis. J Exp Med 209:123–137. doi:10.1084/jem.20111009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lev N, Melamed E, Offen D (2003) Apoptosis and Parkinson’s disease. Prog Neuropsychopharmacol Biol Psychiatry 27:245–250. doi:10.1016/S0278-5846(03)00019-8

    Article  CAS  PubMed  Google Scholar 

  81. Li H, Ambade A, Re F (2009) Cutting edge: necrosis activates the NLRP3 inflammasome. J Immunol 183:1528–1532. doi:10.4049/jimmunol.0901080

    Article  CAS  PubMed  Google Scholar 

  82. Li Y, Feng Q, Arnold M, Peng T (2009) Calpain activation contributes to hyperglycaemia-induced apoptosis in cardiomyocytes. Cardiovasc Res 84:100–110. doi:10.1093/cvr/cvp189

    Article  CAS  PubMed  Google Scholar 

  83. Li Y, Takemura G, Kosai K, Takahashi T, Okada H, Miyata S, Yuge K, Nagano S, Esaki M, Khai NC, Goto K, Mikami A, Maruyama R, Minatoguchi S, Fujiwara T, Fujiwara H (2004) Critical roles for the Fas/Fas ligand system in postinfarction ventricular remodeling and heart failure. Circ Res 95:627–636. doi:10.1161/01.RES.0000141528.54850.bd

    Article  CAS  PubMed  Google Scholar 

  84. Litt MR, Jeremy RW, Weisman HF, Winkelstein JA, Becker LC (1989) Neutrophil depletion limited to reperfusion reduces myocardial infarct size after 90 minutes of ischemia. Evidence for neutrophil-mediated reperfusion injury. Circulation 80:1816–1827

    Article  CAS  PubMed  Google Scholar 

  85. Liu Y, Cigola E, Cheng W, Kajstura J, Olivetti G, Hintze TH, Anversa P (1995) Myocyte nuclear mitotic division and programmed myocyte cell death characterize the cardiac myopathy induced by rapid ventricular pacing in dogs. Lab Invest 73:771–787

    CAS  PubMed  Google Scholar 

  86. Mayorga M, Bahi N, Ballester M, Comella JX, Sanchis D (2004) Bcl-2 is a key factor for cardiac fibroblast resistance to programmed cell death. J Biol Chem 279:34882–34889. doi:10.1074/jbc.M404616200

    Article  CAS  PubMed  Google Scholar 

  87. Mertens S, Noll T, Spahr R, Krutzfeldt A, Piper HM (1990) Energetic response of coronary endothelial cells to hypoxia. Am J Physiol 258:H689–H694

    CAS  PubMed  Google Scholar 

  88. Mines MA, Beurel E, Jope RS (2011) Regulation of cell survival mechanisms in Alzheimer’s disease by glycogen synthase kinase-3. Int J Alzheimers Dis 2011:861072. doi:10.4061/2011/861072

    PubMed  PubMed Central  Google Scholar 

  89. Misao J, Hayakawa Y, Ohno M, Kato S, Fujiwara T, Fujiwara H (1996) Expression of bcl-2 protein, an inhibitor of apoptosis, and Bax, an accelerator of apoptosis, in ventricular myocytes of human hearts with myocardial infarction. Circulation 94:1506–1512

    Article  CAS  PubMed  Google Scholar 

  90. Nadal-Ginard B, Kajstura J, Anversa P, Leri A (2003) A matter of life and death: cardiac myocyte apoptosis and regeneration. J Clin Investig 111:1457–1459. doi:10.1172/JCI18611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo JL, Libby P, Weissleder R, Pittet MJ (2007) The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 204:3037–3047. doi:10.1084/jem.20070885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Narula J, Haider N, Virmani R, DiSalvo TG, Kolodgie FD, Hajjar RJ, Schmidt U, Semigran MJ, Dec GW, Khaw BA (1996) Apoptosis in myocytes in end-stage heart failure. N Engl J Med 335:1182–1189. doi:10.1056/NEJM199610173351603

    Article  CAS  PubMed  Google Scholar 

  93. Nepomniashchikh LM, Semenova LA, Semenov DE (1989) Ultrastructural mechanisms of myocardial atrophy in white rats during starvation. Biull Eksp Biol Med 107:477–481

    CAS  PubMed  Google Scholar 

  94. Nural-Guvener HF, Zakharova L, Nimlos J, Popovic S, Mastroeni D, Gaballa MA (2014) HDAC class I inhibitor, Mocetinostat, reverses cardiac fibrosis in heart failure and diminishes CD90+ cardiac myofibroblast activation. Fibrogenesis Tissue Repair 7:10. doi:10.1186/1755-1536-7-10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Palaniyappan A, Uwiera RR, Idikio H, Menon V, Jugdutt C, Jugdutt BI (2013) Attenuation of increased secretory leukocyte protease inhibitor, matricellular proteins and angiotensin II and left ventricular remodeling by candesartan and omapatrilat during healing after reperfused myocardial infarction. Mol Cell Biochem 376:175–188. doi:10.1007/s11010-013-1565-2

    Article  CAS  PubMed  Google Scholar 

  96. Pallet N, Hebert MJ (2011) The apoptotic program promotes tissue remodeling and fibrosis. Kidney Int 80:1108. doi:10.1038/ki.2011.307 (author reply 1108)

    Article  PubMed  Google Scholar 

  97. Park M, Shen YT, Gaussin V, Heyndrickx GR, Bartunek J, Resuello RR, Natividad FF, Kitsis RN, Vatner DE, Vatner SF (2009) Apoptosis predominates in nonmyocytes in heart failure. Am J Physiol Heart Circ Physiol 297:H785–H791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Park M, Vatner SF, Yan L, Gao S, Yoon S, Lee GJ, Xie LH, Kitsis RN, Vatner DE (2013) Novel mechanisms for caspase inhibition protecting cardiac function with chronic pressure overload. Basic Res Cardiol 108:324. doi:10.1007/s00395-012-0324-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Porter KE, Turner NA (2009) Cardiac fibroblasts: at the heart of myocardial remodeling. Pharmacol Ther 123:255–278. doi:10.1016/j.pharmthera.2009.05.002

    Article  CAS  PubMed  Google Scholar 

  100. Rafatian N, Westcott KV, White RA, Leenen FH (2014) Cardiac macrophages and apoptosis after myocardial infarction: effects of central MR blockade. Am J Physiol Regul Integr Comp Physiol 307:R879–R887. doi:10.1152/ajpregu.00075.2014

    Article  CAS  PubMed  Google Scholar 

  101. Reddy S, Zhao M, Hu DQ, Fajardo G, Katznelson E, Punn R, Spin JM, Chan FP, Bernstein D (2013) Physiologic and molecular characterization of a murine model of right ventricular volume overload. Am J Physiol Heart Circ Physiol 304:H1314–H1327. doi:10.1152/ajpheart.00776.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Romson JL, Hook BG, Kunkel SL, Abrams GD, Schork MA, Lucchesi BR (1983) Reduction of the extent of ischemic myocardial injury by neutrophil depletion in the dog. Circulation 67:1016–1023

    Article  CAS  PubMed  Google Scholar 

  103. Roulston A, Marcellus RC, Branton PE (1999) Viruses and apoptosis. Annu Rev Microbiol 53:577–628. doi:10.1146/annurev.micro.53.1.577

    Article  CAS  PubMed  Google Scholar 

  104. Rupp H, Maisch B (1999) Control of apoptosis of cardiovascular fibroblasts: a novel drug target. Herz 24:225–231

    Article  CAS  PubMed  Google Scholar 

  105. Sawa A, Wiegand GW, Cooper J, Margolis RL, Sharp AH, Lawler JF Jr, Greenamyre JT, Snyder SH, Ross CA (1999) Increased apoptosis of Huntington disease lymphoblasts associated with repeat length-dependent mitochondrial depolarization. Nat Med 5:1194–1198. doi:10.1038/13518

    Article  CAS  PubMed  Google Scholar 

  106. Scarabelli T, Stephanou A, Rayment N, Pasini E, Comini L, Curello S, Ferrari R, Knight R, Latchman D (2001) Apoptosis of endothelial cells precedes myocyte cell apoptosis in ischemia/reperfusion injury. Circulation 104:253–256

    Article  CAS  PubMed  Google Scholar 

  107. Scarabelli TM, Knight RA, Rayment NB, Cooper TJ, Stephanou A, Brar BK, Lawrence KM, Santilli G, Latchman DS, Baxter GF, Yellon DM (1999) Quantitative assessment of cardiac myocyte apoptosis in tissue sections using the fluorescence-based tunnel technique enhanced with counterstains. J Immunol Methods 228:23–28 (S0022-1759(99)00090-3 [pii])

    Article  CAS  PubMed  Google Scholar 

  108. Schmiedl A, Richter J, Schnabel PA (2002) Different preservation of myocardial capillary endothelial cells and cardiomyocytes during and after cardioplegic ischemia (25 °C) of canine hearts. Pathol Res Pract 198:281–290

    Article  CAS  PubMed  Google Scholar 

  109. Sharov VG, Sabbah HN, Shimoyama H, Goussev AV, Lesch M, Goldstein S (1996) Evidence of cardiocyte apoptosis in myocardium of dogs with chronic heart failure. Am J Pathol 148:141–149

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Singhal AK, Symons JD, Boudina S, Jaishy B, Shiu YT (2010) Role of endothelial cells in myocardial ischemia-reperfusion injury. Vasc Dis Prev 7:1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Suzuki K, Kostin S, Person V, Elsasser A, Schaper J (2001) Time course of the apoptotic cascade and effects of caspase inhibitors in adult rat ventricular cardiomyocytes. J Mol Cell Cardiol 33:983–994. doi:10.1006/jmcc.2001.1364

    Article  CAS  PubMed  Google Scholar 

  112. Takeda N, Manabe I, Uchino Y, Eguchi K, Matsumoto S, Nishimura S, Shindo T, Sano M, Otsu K, Snider P, Conway SJ, Nagai R (2010) Cardiac fibroblasts are essential for the adaptive response of the murine heart to pressure overload. J Clin Investig 120:254–265. doi:10.1172/JCI40295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Takemura G, Ohno M, Hayakawa Y, Misao J, Kanoh M, Ohno A, Uno Y, Minatoguchi S, Fujiwara T, Fujiwara H (1998) Role of apoptosis in the disappearance of infiltrated and proliferated interstitial cells after myocardial infarction. Circ Res 82:1130–1138

    Article  CAS  PubMed  Google Scholar 

  114. Tanaka M, Ito H, Adachi S, Akimoto H, Nishikawa T, Kasajima T, Marumo F, Hiroe M (1994) Hypoxia induces apoptosis with enhanced expression of Fas antigen messenger RNA in cultured neonatal rat cardiomyocytes. Circ Res 75:426–433

    Article  CAS  PubMed  Google Scholar 

  115. Thorp EB (2012) Contrasting inflammation resolution during atherosclerosis and post myocardial infarction at the level of monocyte/macrophage phagocytic clearance. Front Immunol 3:39. doi:10.3389/fimmu.2012.00039

    Article  PubMed  PubMed Central  Google Scholar 

  116. Tirziu D, Giordano FJ, Simons M (2010) Cell communications in the heart. Circulation 122:928–937. doi:10.1161/CIRCULATIONAHA.108.847731

    Article  PubMed  PubMed Central  Google Scholar 

  117. Tracchi I, Ghigliotti G, Mura M, Garibaldi S, Spallarossa P, Barisione C, Boasi V, Brunelli M, Corsiglia L, Barsotti A, Brunelli C (2009) Increased neutrophil lifespan in patients with congestive heart failure. Eur J Heart Fail 11:378–385. doi:10.1093/eurjhf/hfp031

    Article  CAS  PubMed  Google Scholar 

  118. Turner NA, Porter KE (2013) Function and fate of myofibroblasts after myocardial infarction. Fibrogenesis Tissue Repair 6:5. doi:10.1186/1755-1536-6-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. van Amerongen MJ, Harmsen MC, van Rooijen N, Petersen AH, van Luyn MJ (2007) Macrophage depletion impairs wound healing and increases left ventricular remodeling after myocardial injury in mice. Am J Pathol 170:818–829. doi:10.2353/ajpath.2007.060547

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Vinten-Johansen J (2004) Involvement of neutrophils in the pathogenesis of lethal myocardial reperfusion injury. Cardiovasc Res 61:481–497. doi:10.1016/j.cardiores.2003.10.011

    Article  CAS  PubMed  Google Scholar 

  121. Virchow R (1859) Die Cellularpathologie in ihrer Begrundung auf physiologische und pathologische Gewebelehre, Berlin

  122. Wan E, Yeap XY, Dehn S, Terry R, Novak M, Zhang S, Iwata S, Han X, Homma S, Drosatos K, Lomasney J, Engman DM, Miller SD, Vaughan DE, Morrow JP, Kishore R, Thorp EB (2013) Enhanced efferocytosis of apoptotic cardiomyocytes through myeloid-epithelial-reproductive tyrosine kinase links acute inflammation resolution to cardiac repair after infarction. Circ Res 113:1004–1012. doi:10.1161/CIRCRESAHA.113.301198

    Article  CAS  PubMed  Google Scholar 

  123. Wencker D, Chandra M, Nguyen K, Miao W, Garantziotis S, Factor SM, Shirani J, Armstrong RC, Kitsis RN (2003) A mechanistic role for cardiac myocyte apoptosis in heart failure. J Clin Investig 111:1497–1504. doi:10.1172/JCI17664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Willems IE, Havenith MG, De Mey JG, Daemen MJ (1994) The alpha-smooth muscle actin-positive cells in healing human myocardial scars. Am J Pathol 145:868–875

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Wright J, Collins WT et al (1946) Myocardial and endocardial fibrosis with cardiac failure. Cin J Med 27:813–823

    CAS  Google Scholar 

  126. Xu X, Bucala R, Ren J (2013) Macrophage migration inhibitory factor deficiency augments doxorubicin-induced cardiomyopathy. J Am Heart Assoc 2:e000439. doi:10.1161/JAHA.113.000439

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Yamamoto S, Yang G, Zablocki D, Liu J, Hong C, Kim SJ, Soler S, Odashima M, Thaisz J, Yehia G, Molina CA, Yatani A, Vatner DE, Vatner SF, Sadoshima J (2003) Activation of Mst1 causes dilated cardiomyopathy by stimulating apoptosis without compensatory ventricular myocyte hypertrophy. J Clin Investig 111:1463–1474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Yan L, Vatner SF, Vatner DE (2014) Disruption of type 5 adenylyl cyclase prevents beta-adrenergic receptor cardiomyopathy: a novel approach to beta-adrenergic receptor blockade. Am J Physiol Heart circ Physiol 307:H1521–H1528. doi:10.1152/ajpheart.00491.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Yuasa S, Fukuda K, Tomita Y, Fujita J, Ieda M, Tahara S, Itabashi Y, Yagi T, Kawaguchi H, Hisaka Y, Ogawa S (2004) Cardiomyocytes undergo cells division following myocardial infarction is a spatially and temporally restricted event in rats. Mol Cell Biochem 259:177–181

    Article  CAS  PubMed  Google Scholar 

  130. Zeisberg EM, Kalluri R (2010) Origins of cardiac fibroblasts. Circ Res 107:1304–1312. doi:10.1161/CIRCRESAHA.110.231910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Zhang XP, Vatner SF, Shen YT, Rossi F, Tian Y, Peppas A, Resuello RR, Natividad FF, Vatner DE (2007) Increased apoptosis and myocyte enlargement with decreased cardiac mass; distinctive features of the aging male, but not female, monkey heart. J Mol Cell Cardiol 43:487–491. doi:10.1016/j.yjmcc.2007.07.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Zhao X, Zhang W, Xing D, Li P, Fu J, Gong K, Hage FG, Oparil S, Chen YF (2013) Endothelial cells overexpressing IL-8 receptor reduce cardiac remodeling and dysfunction following myocardial infarction. Am J Physiol Heart Circ Physiol 305:H590–H598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Study was supported by National Institute of Health Grants 5R01HL102472, 6T32HL069752, 5R01HL119464, 3P01HL069020, 6R01HL093481, 5R01HL106511, 1R01HL124282, R01HL130848.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen F. Vatner.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corbalan, J.J., Vatner, D.E. & Vatner, S.F. Myocardial apoptosis in heart disease: does the emperor have clothes?. Basic Res Cardiol 111, 31 (2016). https://doi.org/10.1007/s00395-016-0549-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-016-0549-2

Keywords

Navigation