Skip to main content

Mechanisms of Cardiac Cell Death

  • Chapter
  • First Online:
Cardiomyocytes – Active Players in Cardiac Disease

Abstract

As cardiomyocytes build up the contractile machinery of the heart, every loss of cardiomyocytes in diverse cardiac diseases inevitably weakens the contractile power of the heart. Therefore, prevention of cardiomyocyte death should be one of the major aims when thinking about cardioprotection. As cell death can take different forms that are induced by various stressors and that proceed via different pathways, it is necessary to strictly differentiate between these kinds of death in order to find optimised ways of therapy. In this chapter, we will introduce necrosis, apoptosis, necroptosis and the death-related process of autophagy as the different kinds of cell death occurring in cardiomyocytes. The triggers of cardiomyocyte death and the contribution of different kinds of cell death to cardiac diseases, with a special focus on ischemia/reperfusion injury and heart failure progression, will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281(5381):1305–1308

    Article  CAS  PubMed  Google Scholar 

  • Bakhshayesh M, Zaker F, Hashemi M, Katebi M, Solaimani M (2012) TGF-β1-mediated apoptosis associated with SMAD-dependent mitochondrial Bcl-2 expression. Clin Lymphoma Myeloma Leuk 12:138–143

    Article  CAS  PubMed  Google Scholar 

  • Barrabés JA, Garcia-Dorado D, Ruiz-Meana M, Piper HM, Solares J, González MA, Oliveras J, Herrejón MP, Soler Soler J (1996) Myocardial segment shrinkage during coronary reperfusion in situ. Relation to hypercontracture and myocardial necrosis. Pflugers Arch 431:519–526

    Article  PubMed  Google Scholar 

  • Beltrami CA, Finato N, Rocco M, Feruglio GA, Puricelli C, Cigola E, Quaini F, Sonnenblick EH, Olivetti G, Anversa P (1994) Structural basis of end-stage failure in ischemic cardiomyopathy in humans. Circulation 89:151–163

    Article  CAS  PubMed  Google Scholar 

  • Beltrami CA, Finato N, Rocco M, Feruglio GA, Puricelli C, Cigola E, Sonnenblick EH, Olivetti G, Anversa P (1995) The cellular basis of dilated cardiomyopathy in humans. J Mol Cell Cardiol 27:291–305

    Article  CAS  PubMed  Google Scholar 

  • Biala AK, Kirshenbaum LA (2014) The interplay between cell death signaling pathways in the heart. Trends Cardiovasc Med 24(8):325–331

    Article  CAS  PubMed  Google Scholar 

  • Bhuiyan MS, Fukunaga K (2008) Activation of HtrA2, a mitochondrial serine protease mediates apoptosis: current knowledge on HtrA2 mediated myocardial ischemia/reperfusion injury. Cardiovasc Ther 26(3):224–232

    Article  CAS  PubMed  Google Scholar 

  • Cao DJ, Wang ZV, Battiprolu PK, Jiang N, Morales CR, Kong Y, Rothermel BA, Gillette TG, Hill JA (2011) Histone deacetylase (HDAC) inhibitors attenuate cardiac hypertrophy by suppressing autophagy. Proc Natl Acad Sci U S A 108:4123–4128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castro MM, Fuah J, Ali M, Sung M, Schulz J, Kondo MY, Fan X, Holt A, Schulz R (2013) Inhibitory effects of caspase inhibitors on the activity of matrix metalloproteinase-2. Biochem Pharmacol 86:469–475

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Chua CC, Ho YS, Hamdy RC, Chua BH (2001) Overexpression of Bcl-2 attenuates apoptosis and protects against myocardial I/R injury in transgenic mice. Am J Physiol Heart Circ Physiol 280:H2313–H2320

    CAS  PubMed  Google Scholar 

  • Chen X, Zhang X, Kubo H, Harris DM, Mills GD, Moyer J, Berretta R, Potts ST, Marsh JD, Houser SR (2005) Ca2+ influx-induced sarcoplasmic reticulum Ca2+ overload causes mitochondrial-dependent apoptosis in ventricular myocytes. Circ Res 97:1009–1017

    Article  CAS  PubMed  Google Scholar 

  • Cheng W, Kajstura J, Nitahara JA, Li B, Reiss K, Liu Y, Clark WA, Krajewski S, Reed JC, Olivetti G, Anversa P (1996) Programmed myocyte cell death affects the viable myocardium after infarction in rats. Exp Cell Res 226(2):316–327

    Article  CAS  PubMed  Google Scholar 

  • Chua CC, Gao J, Ho YS, Xiong Y, Xu X, Chen Z, Hamdy RC, Chua BH (2007) Over expression of IAP-2 attenuates apoptosis and protects against myocardial ischemia/reperfusion injury in transgenic mice. Biochim Biophys Acta 1773:577–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Communal C, Singh K, Pimentel DR, Colucci WS (1998) Norepinephrine stimulates apoptosis in adult rat ventricular myocytes by activation of the beta-adrenergic pathway. Circulation 98:1329–1334

    Article  CAS  PubMed  Google Scholar 

  • Communal C, Sumandea M, deTombe P, Narula J, Solaro RJ, Hajjar RJ (2002) Functional consequences of caspase activation in cardiac myocytes. Proc Natl Acad Sci U S A 99:6252–6256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Didenko VV, Hornsby PJ (1996) Presence of double-strand breaks with single-base 3′ overhangs in cells undergoing apoptosis but not necrosis. J Cell Biol 135:1369–1376

    Article  CAS  PubMed  Google Scholar 

  • Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S, Gottlieb E, Green DR, Hengartner MO, Kepp O, Knight RA, Kumar S, Lipton SA, Lu X, Madeo F, Malorni W, Mehlen P, Nuñez G, Peter ME, Piacentini M, Rubinsztein DC, Shi Y, Simon HU, Vandenabeele P, White E, Yuan J, Zhivotovsky B, Melino G, Kroemer G (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19:107–120

    Article  CAS  PubMed  Google Scholar 

  • Gatica D, Chiong M, Lavandero S, Klionsky DJ (2015) Molecular mechanisms of autophagy in the cardiovascular system. Circ Res 116:456–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golstein P, Kroemer G (2007) Cell death by necrosis: towards a molecular definition. Trends Biochem Sci 32(1):37–43

    Article  CAS  PubMed  Google Scholar 

  • Gottlieb RA, Burleson KO, Kloner RA, Babior BM, Engler RL (1994) Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest 94:1621–1628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerra S, Leri A, Wang X, Finato N, Di Loreto C, Beltrami CA, Kajstura J, Anversa P (1999) Myocyte death in the failing human heart is gender dependent. Circ Res 85(9):856–866

    Article  CAS  PubMed  Google Scholar 

  • Ha Thi HT, Lim HS, Kim J, Kim YM, Kim HY, Hong S (2013) Transcriptional and post-translational regulation of Bim is essential for TGF-β and TNF-α-induced apoptosis of gastric cancer cell. Biochim Biophys Acta 1830:3584–3592

    Article  CAS  PubMed  Google Scholar 

  • Hariharan N, Zhai P, Sadoshima J (2011) Oxidative stress stimulates autophagic flux during ischemia/reperfusion. Antioxid Redox Signal 14:2179–2190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heger J, Peters SC, Piper HM, Euler G (2009) SMAD-proteins as a molecular switch from hypertrophy to apoptosis induction in adult ventricular cardiomyocytes. J Cell Physiol 220:515–523

    Article  CAS  PubMed  Google Scholar 

  • Heger J, Warga B, Meyering B, Abdallah Y, Schlüter KD, Piper HM, Euler G (2011) TGFβ receptor activation enhances cardiac apoptosis via SMAD activation and concomitant NO release. J Cell Physiol 226(10):2683–2690

    Article  CAS  PubMed  Google Scholar 

  • Heger J, Abdallah Y, Shahzad T, Klumpe I, Piper HM, Schultheiss HP, Schlüter KD, Schulz R, Euler G, Dörner A (2012) Transgenic overexpression of the adenine nucleotide translocase 1 protects cardiomyocytes against TGFβ1-induced apoptosis by stabilization of the mitochondrial permeability transition pore. J Mol Cell Cardiol 53(1):73–81

    Article  CAS  PubMed  Google Scholar 

  • Hochhauser E, Cheporko Y, Yasovich N, Pinchas L, Offen D, Barhum Y, Pannet H, Tobar A, Vidne BA, Birk E (2007) Bax deficiency reduces infarct size and improves long-term function after myocardial infarction. Cell Biochem Biophys 47:11–20

    Article  CAS  PubMed  Google Scholar 

  • Holly TA, Drincic A, Byun Y, Nakamura S, Harris K, Klocke FJ, Cryns VL (1999) Caspase inhibition reduces myocyte cell death induced by myocardial ischemia and reperfusion in vivo. J Mol Cell Cardiol 31(9):1709–1715

    Article  CAS  PubMed  Google Scholar 

  • Huang C, Yitzhaki S, Perry CN, Liu W, Giricz Z, Mentzer RM Jr, Gottlieb RA (2010) Autophagy induced by ischemic preconditioning is essential for cardioprotection. J Cardiovasc Transl Res 3:365–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Qi Q, Hua X, Li X, Zhang W, Sun H, Li S, Wang X, Li B (2014) Beclin 1, an autophagy-related gene, augments apoptosis in U87 glioblastoma cells. Oncol Rep 31:1761–1767

    CAS  PubMed  Google Scholar 

  • Inserte J, Taimor G, Hofstaetter B, Garcia-Dorado D, Piper HM (2000) Influence of simulated ischemia on apoptosis induction by oxidative stress in adult cardiomyocytes of rats. Am J Physiol Heart Circ Physiol 278(1):H94–H99

    Google Scholar 

  • Inserte J, Garcia-Dorado D, Ruiz-Meana M, Padilla F, Barrabés JA, Pina P, Agulló L, Piper HM, Soler-Soler J (2002) Effect of inhibition of Na(+)/Ca(2+) exchanger at the time of myocardial reperfusion on hypercontracture and cell death. Cardiovasc Res 55:739–748

    Article  CAS  PubMed  Google Scholar 

  • Inserte J, Garcia-Dorado D, Hernando V, Soler-Soler J (2005) Calpain-mediated impairment of Na+/K+ -ATPase activity during early reperfusion contributes to cell death after myocardial ischemia. Circ Res 97:465–473

    Article  CAS  PubMed  Google Scholar 

  • Jeremias I, Kupatt C, Martin-Villalba A, Habazettl H, Schenkel J, Boekstegers P, Debatin KM (2000) Involvement of CD95/Apo1/Fas in cell death after myocardial ischemia. Circulation 102:915–920

    Article  CAS  PubMed  Google Scholar 

  • Kajstura J, Cheng W, Reiss K, Clark WA, Sonnenblick EH, Krajewski S, Reed JC, Olivetti G, Anversa P (1996) Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab Invest 74(1):86–107

    CAS  PubMed  Google Scholar 

  • Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kischkel FC, Hellbardt S, Behrmann I, Germer M, Pawlita M, Krammer PH, Peter ME (1995) Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signalling complex (DISC) with the receptor. EMBO J 14:5579–5588

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koudstaal S, Oerlemans MI, Van der Spoel TI, Janssen AW, Hoefer IE, Doevendans PA, Sluijter JP, Chamuleau SA (2015) Necrostatin-1 alleviates reperfusion injury following acute myocardial infarction in pigs. Eur J Clin Invest 45(2):150–159

    Article  CAS  PubMed  Google Scholar 

  • Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR, Hengartner M, Knight RA, Kumar S, Lipton SA, Malorni W, Nuñez G, Peter ME, Tschopp J, Yuan J, Piacentini M, Zhivotovsky B, Melino G (2009) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16:3–11

    Article  CAS  PubMed  Google Scholar 

  • Krysko DV, Vanden Berghe T, D’Herde K, Vandenabeele P (2008) Apoptosis and necrosis: detection, discrimination and phagocytosis. Methods 44:205–221

    Article  CAS  PubMed  Google Scholar 

  • Lee P, Sata M, Lefer DJ, Factor SM, Walsh K, Kitsis RN (2003) Fas pathway is a critical mediator of cardiac myocyte death and MI during ischemia-reperfusion in vivo. Am J Physiol Heart Circ Physiol 284:H456–H463

    Article  CAS  PubMed  Google Scholar 

  • Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501

    Article  CAS  PubMed  Google Scholar 

  • Li LY, Luo X, Wang X (2001) Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412:95–99

    Article  CAS  PubMed  Google Scholar 

  • Li L, Chen Y, Doan J, Murray J, Molkentin JD, Liu Q (2014) Transforming growth factor β-activated kinase 1 signaling pathway critically regulates myocardial survival and remodeling. Circulation 130:2162–2172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim SY, Davidson SM, Mocanu MM, Yellon DM, Smith CC (2007) The cardio protective effect of necrostatin requires the cyclophilin-D component of the mitochondrial permeability transition pore. Cardiovasc Drugs Ther 21:467–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luedde M, Lutz M, Carter N, Sosna J, Jacoby C, Vucur M, Gautheron J, Roderburg C, Borg N, Reisinger F, Hippe HJ, Linkermann A, Wolf MJ, Rose-John S, Lüllmann-Rauch R, Adam D, Flögel U, Heikenwalder M, Luedde T, Frey N (2014) RIP3, a kinase promoting necroptotic cell death, mediates adverse remodelling after myocardial infarction. Cardiovasc Res 103:206–216

    Article  CAS  PubMed  Google Scholar 

  • Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, Levine B, Sadoshima J (2007) Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res 100:914–922

    Article  CAS  PubMed  Google Scholar 

  • Maulik N, Yoshida T, Das DK (1998) Oxidative stress developed during the reperfusion of ischemic myocardium induces apoptosis. Free Radic Biol Med 24(5):869–875

    Article  CAS  PubMed  Google Scholar 

  • Mughal W, Kirshenbaum LA (2011) Cell death signalling mechanisms in heart failure. Exp Clin Cardiol 16:102–108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muraski JA, Rota M, Misao Y, Fransioli J, Cottage C, Gude N, Esposito G, Delucchi F, Arcarese M, Alvarez R, Siddiqi S, Emmanuel GN, Wu W, Fischer K, Martindale JJ, Glembotski CC, Leri A, Kajstura J, Magnuson N, Berns A, Beretta RM, Houser SR, Schaefer EM, Anversa P, Sussman MA (2007) Pim-1 regulates cardiomyocyte survival downstream of Akt. Nat Med 13:1467–1475

    Article  CAS  PubMed  Google Scholar 

  • Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S, Taniike M, Omiya S, Mizote I, Matsumura Y, Asahi M, Nishida K, Hori M, Mizushima N, Otsu K (2007) The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med 13:619–624

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, Yamagata H, Inohara H, Kubo T, Tsujimoto Y (2005) Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434:652–658

    Article  CAS  PubMed  Google Scholar 

  • Nakayama H, Chen X, Baines CP, Klevitsky R, Zhang X, Zhang H, Jaleel N, Chua BH, Hewett TE, Robbins J, Houser SR, Molkentin JD (2007) Ca2+- and mitochondrial-dependent cardiomyocyte necrosis as a primary mediator of heart failure. J Clin Invest 117:2431–2444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nazareth W, Yafei N, Crompton M (1991) Inhibition of anoxia-induced injury in heart myocytes by cyclosporin A. J Mol Cell Cardiol 23:1351–1354

    Article  CAS  PubMed  Google Scholar 

  • Oerlemans MI, Liu J, Arslan F, den Ouden K, van Middelaar BJ, Doevendans PA, Sluijter JP (2012) Inhibition of RIP1-dependent necrosis prevents adverse cardiac remodeling after myocardial ischemia-reperfusion in vivo. Basic Res Cardiol 107:270

    Article  PubMed  Google Scholar 

  • Olivetti G, Melissari M, Balbi T, Quaini F, Cigola E, Sonnenblick EH, Anversa P (1994) Myocyte cellular hypertrophy is responsible for ventricular remodelling in the hypertrophied heart of middle aged individuals in the absence of cardiac failure. Cardiovasc Res 28:1199–1208

    Article  CAS  PubMed  Google Scholar 

  • Olivetti G, Quaini F, Sala R, Lagrasta C, Corradi D, Bonacina E, Gambert SR, Cigola E, Anversa P (1996) Acute myocardial infarction in humans is associated with activation of programmed myocyte cell death in the surviving portion of the heart. J Mol Cell Cardiol 28(9):2005–2016

    Google Scholar 

  • Papanicolaou KN, Khairallah RJ, Ngoh GA, Chikando A, Luptak I, O’Shea KM, Riley DD, Lugus JJ, Colucci WS, Lederer WJ, Stanley WC, Walsh K (2011) Mitofusin-2 maintains mitochondrial structure and contributes to stress-induced permeability transition in cardiac myocytes. Mol Cell Biol 31:1309–1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park M, Vatner SF, Yan L, Gao S, Yoon S, Lee GJ, Xie LH, Kitsis RN, Vatner DE (2013) Novel mechanisms for caspase inhibition protecting cardiac function with chronic pressure overload. Basic Res Cardiol 108(1):324

    Article  PubMed  PubMed Central  Google Scholar 

  • Przyklenk K, Undyala VV, Wider J, Sala-Mercado JA, Gottlieb RA, Mentzer RM Jr (2011) Acute induction of autophagy as a novel strategy for cardioprotection: getting to the heart of the matter. Autophagy 7:432–433

    Article  PubMed  PubMed Central  Google Scholar 

  • Regula KM, Ens K, Kirshenbaum LA (2002) Inducible expression of BNIP3 provokes mitochondrial defects and hypoxia-mediated cell death of ventricular myocytes. Circ Res 91:226–231

    Article  CAS  PubMed  Google Scholar 

  • Riss TL, Moravec RA, Niles AL, Benink HA, Worzella TJ, Minor L, Storts D, Reid Y (2004–2013) Cell viability assays. In: Sittampalam GS, Coussens NP, Nelson H et al (eds) Assay guidance manual [Internet]. Eli Lilly & Company and the National Center for Advancing Translational Sciences, Bethesda. Available from: http://www.ncbi.nlm.nih.gov/books/NBK144065

  • Rodriguez-Sinovas A, García-Dorado D, Pina P, Ruiz-Meana M, Soler-Soler J (2004) Effect of sarcolemmal rupture on myocardial electrical impedance during oxygen deprivation. Am J Physiol Heart Circ Physiol 288:H1396–H1403

    Article  PubMed  Google Scholar 

  • Ruetten H, Badorff C, Ihling C, Zeiher AM, Dimmeler S (2001) Inhibition of caspase-3 improves contractile recovery of stunned myocardium, independent of apoptosis-inhibitory effects. J Am Coll Cardiol 38:2063–2070

    Article  CAS  PubMed  Google Scholar 

  • Saraste A, Pulkki K, Kallajoki M, Henriksen K, Parvinen M, Voipio-Pulkki LM (1997) Apoptosis in human acute myocardial infarction. Circulation 95(2):320–323

    Article  CAS  PubMed  Google Scholar 

  • Scarabelli TM, Gottlieb RA (2004) Functional and clinical repercussions of myocyte apoptosis in the multifaceted damage by ischemia/reperfusion injury: old and new concepts after 10 years of contributions. Cell Death Differ 11 Suppl 2:S144–S152

    Article  CAS  PubMed  Google Scholar 

  • Scarabelli T, Stephanou A, Rayment N, Pasini E, Comini L, Curello S, Ferrari R, Knight R, Latchman D (2001) Apoptosis of endothelial cells precedes myocyte cell apoptosis in ischemia/reperfusion injury. Circulation 104(3):253–256

    Article  CAS  PubMed  Google Scholar 

  • Schneiders D, Heger J, Best P, Michael Piper H, Taimor G (2005) SMAD proteins are involved in apoptosis induction in ventricular cardiomyocytes. Cardiovasc Res 67:87–96

    Article  CAS  PubMed  Google Scholar 

  • Schröder D, Heger J, Piper HM, Euler G (2006) Angiotensin II stimulates apoptosis via TGF-beta1 signalling in ventricular cardiomyocytes of rat. J Mol Med 84:975–983

    Article  PubMed  Google Scholar 

  • Smith CC, Davidson SM, Lim SY, Simpkin JC, Hothersall JS, Yellon DM (2007) Necrostatin: a potentially novel cardio protective agent? Cardiovasc Drugs Ther 21:227–233

    Article  CAS  PubMed  Google Scholar 

  • Strober W (2001) Trypan blue exclusion test of cell viability. Curr Protoc Immunol Appendix 3B. doi:10.1002/0471142735

  • Sussman MA (2009) Mitochondrial integrity: preservation through Akt/Pim-1 kinase signalling in the cardiomyocyte. Expert Rev Cardiovasc Ther 7:929–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taimor G, Lorenz H, Hofstaetter B, Schlüter KD, Piper HM (1999) Induction of necrosis but not apoptosis after anoxia and reoxygenation in isolated adult cardiomyocytes of rat. Cardiovasc Res 41:147–156

    Article  CAS  PubMed  Google Scholar 

  • Taimor G, Schlüter KD, Best P, Helmig S, Piper HM (2004) Transcription activator protein 1 mediates alpha- but not beta-adrenergic hypertrophic growth responses in adult cardiomyocytes. Am J Physiol Heart Circ Physiol 286:H2369–H2375

    Article  CAS  PubMed  Google Scholar 

  • Takagi H, Matsui Y, Hirotani S, Sakoda H, Asano T, Sadoshima J (2007) AMPK mediates autophagy during myocardial ischemia in vivo. Autophagy 3:405–407

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Guhde G, Suter A, Eskelinen EL, Hartmann D, Lullmann-Rauch R, Janssen PM, Blanz J, von Figura K, Saftig P (2000) Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature 406:902–906

    Article  CAS  PubMed  Google Scholar 

  • Tastan H, Abdallah Y, Euler G, Piper HM, Schlüter K-D (2007) Contractile performance of adult ventricular rat cardiomyocytes is not directly jeopardized by NO/cGMP-dependent inhibition of pro-apoptotic pathways. J Mol Cell Cardiol 42:411–421

    Article  CAS  PubMed  Google Scholar 

  • Teiger E, Than VD, Richard L, Wisnewsky C, Tea BS, Gaboury L, Tremblay J, Schwartz K, Hamet P (1996) Apoptosis in pressure overload-induced heart hypertrophy in the rat. J Clin Invest 97(12):2891–2897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toth A, Jeffers JR, Nickson P, Min JY, Morgan JP, Zambetti GP, Erhardt P (2006) Targeted deletion of Puma attenuates cardiomyocyte death and improves cardiac function during ischemia-reperfusion. Am J Physiol Heart Circ Physiol 291:H52–H60

    Article  CAS  PubMed  Google Scholar 

  • Valentim L, Laurence KM, Townsend PA, Carroll CJ, Soond S, Scarabelli TM, Knight RA, Latchman DS, Stephanou A (2006) Urocortin inhibits Beclin1-mediated autophagic cell death in cardiac myocytes exposed to ischaemia/reperfusion injury. J Mol Cell Cardiol 40:846–852

    Article  CAS  PubMed  Google Scholar 

  • Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11(10):700–714

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Zhang H, Gao H, Kubo H, Berretta RM, Chen X, Houser SR (2010) {beta}1-Adrenergic receptor activation induces mouse cardiac myocyte death through both L-type calcium channel-dependent and -independent pathways. Am J Physiol Heart Circ Physiol 299:H322–H331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webster KA, Discher DJ, Kaiser S, Hernandez O, Sato B, Bishopric NH (1999) Hypoxia-activated apoptosis of cardiac myocytes requires reoxygenation or a pH shift and is independent of p53. J Clin Invest 104:239–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wencker D, Chandra M, Nguyen K, Miao W, Garantziotis S et al (2003) A mechanistic role for cardiac myocyte apoptosis in heart failure. J Clin Invest 111:1497–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whelan RS, Konstantinidis K, Wei AC, Chen Y, Reyna DE, Jha S, Yang Y, Calvert JW, Lindsten T, Thompson CB, Crow MT, Gavathiotis E, Dorn GW 2nd, O’Rourke B, Kitsis RN (2012) Bax regulates primary necrosis through mitochondrial dynamics. Proc Natl Acad Sci U S A 109:6566–6571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yaoita H, Ogawa K, Maehara K, Maruyama Y (1998) Attenuation of ischemia/reperfusion injury in rats by a caspase inhibitor. Circulation 97(3):276–281

    Article  CAS  PubMed  Google Scholar 

  • Yue TL, Ma XL, Wang X, Romanic AM, Liu GL, Louden C, Gu JL, Kumar S, Poste G, Ruffolo RR Jr, Feuerstein GZ (1998) Possible involvement of stress-activated protein kinase signaling pathway and Fas receptor expression in prevention of ischemia/reperfusion-induced cardiomyocyte apoptosis by carvedilol. Circ Res 82(2):166–174

    Article  CAS  PubMed  Google Scholar 

  • Zaugg M, Xu W, Lucchinetti E, Shafiq SA, Jamali NZ, Siddiqui MA (2000) Beta-adrenergic receptor subtypes differentially affect apoptosis in adult rat ventricular myocytes. Circulation 102:344–350

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Szeto C, Gao E, Tang M, Jin J, Fu Q, Makarewich C, Ai X, Li Y, Tang A, Wang J, Gao H, Wang F, Ge XJ, Kunapuli SP, Zhou L, Zeng C, Xiang KY, Chen X (2013) Cardiotoxic and cardioprotective features of chronic β-adrenergic signaling. Circ Res 112:498–509

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Tannous P, Johnstone JL, Kong Y, Shelton JM, Richardson JA, Le V, Levine B, Rothermel BA, Hill JA (2007) Cardiac autophagy is a maladaptive response to hemodynamic stress. J Clin Invest 117:1782–1793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhild Euler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Euler, G. (2016). Mechanisms of Cardiac Cell Death. In: Schlüter, KD. (eds) Cardiomyocytes – Active Players in Cardiac Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-31251-4_9

Download citation

Publish with us

Policies and ethics