Skip to main content

Apoptosis in Ischemic Heart Disease

  • Chapter
  • First Online:
Biochemistry of Apoptosis and Autophagy

Abstract

Ischemic heart disease (IHD) due to reduced coronary blood flow over a prolonged period as well as reperfusion of the ischemic myocardium are associated with irreversible cellular damage and contractile failure. Although several major mechanisms including inflammation, oxidative stress and intracellular Ca2+-overload have been identified to induce cardiac injury in IHD, the occurrence of cardiomyocyte cell death due to apoptosis has been considered to play a critical role in the development of heart dysfunction. The activation of several apoptotic and anti-apoptotic proteins belonging to both extrinsic and intrinsic pathways of apoptosis has been demonstrated in IHD. Some major proteins of the extrinsic apoptotic pathway include Fas/Fas ligand, TNF-α, TRAIL as well as Caspase-8 and Caspase-10. On the other hand, mediator proteins of the intrinsic apoptotic pathway are: Bcl-2, Bax, Cytochrome C and Caspase-9. Both extrinsic and intrinsic pathways converge on the terminal apoptotic pathway in which different proteins such as Caspase-3, Caspase-6 and Caspase-7 are activated leading to the degradation of cellular constituents in the ischemic myocardium. Although several agents targeting different apoptotic proteins have been shown to exert cardioprotective effects in experimental studies, the results in various clinical trials in IHD have not been encouraging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartekova M, Barancik M, Dhalla NS (2016) Role of oxidative stress in subcellular defects in ischemic heart disease. In: Gelpi RJ, Boveris A, Paderosa JJ (eds) Biochemistry of oxidative stress: physiopathology and clinical aspects; Adv Biochem Health Dis 16: 129–146

    Google Scholar 

  2. Bartekova M, Ferenczyova K, Jelemensky M, Dhalla NS (2019) Role of oxidative stress and cardiovascular risk factors in ischemic heart disease. In: Chakraborti S, Dhalla NS, Ganguly NK, Dikshit M (eds) Oxidative stress in heart diseases. Springer Nature Singapore, pp 375–394. ISBN 978-981-13-8272-7

    Google Scholar 

  3. Schaftenaar F, Frodermann V, Kuiper J, Lutgens E (2016) Atherosclerosis: the interplay between lipids and immune cells. Curr Opin Lipidol 27(3):209–215. https://doi.org/10.1097/MOL.0000000000000302

    Article  CAS  PubMed  Google Scholar 

  4. Geovanini GR, Libby P (2018) Atherosclerosis and inflammation: overview and updates. Clin Sci (Lond) 132(12):1243–1252. https://doi.org/10.1042/CS20180306

    Article  CAS  Google Scholar 

  5. Bartekova M, Radosinska J, Jelemensky M, Dhalla NS (2018) Role of cytokines and inflammation in heart function during health and disease. Heart Fail Rev 23(5):733–758. https://doi.org/10.1007/s10741-018-9716-x

    Article  CAS  PubMed  Google Scholar 

  6. Wu MY, Yiang GT, Liao WT et al (2018) Current mechanistic concepts in ischemia and reperfusion injury. Cell Physiol Biochem 46(4):1650–1667. https://doi.org/10.1159/000489241

    Article  CAS  PubMed  Google Scholar 

  7. Zaman S, Wang R, Gandhi V (2014) Targeting the apoptosis pathway in hematologic malignancies. Leuk Lymphoma 55(9):1980–1992. https://doi.org/10.3109/10428194.2013.855307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cotter TG (2009) Apoptosis and cancer: the genesis of a research field. Nat Rev Cancer 9(7):501–507. https://doi.org/10.1038/nrc2663

    Article  CAS  PubMed  Google Scholar 

  9. Lev N, Melamed E, Offen D (2003) Apoptosis and Parkinson’s disease. Prog Neuropsychopharmacol Biol Psychiat 27(2):245–250

    CAS  Google Scholar 

  10. Mines MA, Beurel E, Jope RS (2011) Regulation of cell survival mechanisms in Alzheimer's disease by glycogen synthase kinase-3. Int J Alzheimers Dis 2011:861072. https://doi.org/10.4061/2011/861072

  11. Roulston A, Marcellus RC, Branton PE (1999) Viruses and apoptosis. Annu Rev Microbiol 53:577–628

    CAS  PubMed  Google Scholar 

  12. Wang L, Wang FS, Gershwin ME (2015) Human autoimmune diseases: a comprehensive update. J Intern Med 278(4):369–395. https://doi.org/10.1111/joim.12395

    Article  CAS  PubMed  Google Scholar 

  13. Mihaljevic O, Zivancevic-Simonovic S, Milosevic-Djordjevic O et al (2018) Apoptosis and genome instability in children with autoimmune diseases. Mutagenesis 33(5–6):351–357. https://doi.org/10.1093/mutage/gey037

    Article  CAS  PubMed  Google Scholar 

  14. Teringova E, Tousek P (2017) Apoptosis in ischemic heart disease. J Transl Med 15(1):87. https://doi.org/10.1186/s12967-017-1191-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Olivetti G, Quaini F, Sala R et al (1996) Acute myocardial infarction in humans is associated with activation of programmed myocyte cell death in the surviving portion of the heart. J Mol Cell Cardiol 28(9):2005–2016

    CAS  PubMed  Google Scholar 

  16. Saraste A, Pulkki K, Kallajoki M et al (1997) Apoptosis in human acute myocardial infarction. Circulation 95(2):320–323

    CAS  PubMed  Google Scholar 

  17. Baldi A, Abbate A, Bussani R et al (2002) Apoptosis and post-infarction left ventricular remodeling. J Mol Cell Cardiol 34(2):165–174

    CAS  PubMed  Google Scholar 

  18. Lee P, Sata M, Lefer DJ et al (2003) Fas pathway is a critical mediator of cardiac myocyte death and MI during ischemia-reperfusion in vivo. Am J Physiol Heart Circ Physiol 284(2):H456–H463

    CAS  PubMed  Google Scholar 

  19. Liu XM, Yang ZM, Liu XK (2017) Fas/FasL induces myocardial cell apoptosis in myocardial ischemia-reperfusion rat model. Eur Rev Med Pharmacol Sci 21(12):2913–2918

    PubMed  Google Scholar 

  20. Li Y, Takemura G, Kosai K et al (2004) Critical roles for the Fas/Fas ligand system in postinfarction ventricular remodeling and heart failure. Circ Res 95(6):627–636

    CAS  PubMed  Google Scholar 

  21. Fertin M, Bauters A, Pinet F, Bauters C (2012) Circulating levels of soluble Fas ligand and left ventricular remodeling after acute myocardial infarction (from the REVE-2 study). J Cardiol 60(2):93–97. https://doi.org/10.1016/j.jjcc.2012.03.001

    Article  PubMed  Google Scholar 

  22. Nilsson L, Szymanowski A, Swahn E, Jonasson L (2013) Soluble TNF receptors are associated with infarct size and ventricular dysfunction in ST-elevation myocardial infarction. PLoS One 8(2):e55477. https://doi.org/10.1371/journal.pone.0055477

  23. Osmancik P, Teringova E, Tousek P et al (2013) Prognostic value of TNF-related apoptosis inducing ligand (TRAIL) in acute coronary syndrome patients. PLoS One 8(2):e53860. https://doi.org/10.1371/journal.pone.0053860

  24. Tekin D, Xi L, Kukreja RC (2006) Genetic deletion of Fas receptors or Fas ligands does not reduce infarct size after acute global ischemia-reperfusion in isolated mouse heart. Cell Biochem Biophys 44(1):111–117

    CAS  PubMed  Google Scholar 

  25. Sahinarslan A, Boyaci B, Kocaman SA et al (2012) The relationship of serum soluble Fas ligand (sFasL) level with the extent of coronary artery disease. Int J Angiol 21(1):29–34. https://doi.org/10.1055/s-0032-1306418

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kawakami H, Shigematsu Y, Ohtsuka T et al (1998) Increased circulating soluble form of Fas in patients with dilated cardiomyopathy. Jpn Circ J 62(12):873–876

    CAS  PubMed  Google Scholar 

  27. Tsutamoto T, Wada A, Maeda K et al (2001) Relationship between plasma levels of cardiac natriuretic peptides and soluble Fas: plasma soluble Fas as a prognostic predictor in patients with congestive heart failure. J Card Fail 7(4):322–328

    CAS  PubMed  Google Scholar 

  28. Niessner A, Hohensinner PJ, Rychli K et al (2009) Prognostic value of apoptosis markers in advanced heart failure patients. Eur Heart J 30(7):789–796. https://doi.org/10.1093/eurheartj/ehp004

    Article  CAS  PubMed  Google Scholar 

  29. Fan Q, Huang ZM, Boucher M et al (2013) Inhibition of Fas-associated death domain-containing protein (FADD) protects against myocardial ischemia/reperfusion injury in a heart failure mouse model. PLoS One 8(9):e73537. https://doi.org/10.1371/journal.pone.0073537

  30. Saini HK, Xu YJ, Zhang M, Liu PP, Kirshenbaum LA, Dhalla NS (2005) Role of tumour necrosis factor-alpha and other cytokines in ischemia-reperfusion-induced injury in the heart. Exp Clin Cardiol 10(4):213–222

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang M, Xu YJ, Saini HK et al (2005) TNF-alpha as a potential mediator of cardiac dysfunction due to intracellular Ca2+-overload. Biochem Biophys Res Commun 327(1):57–63

    CAS  PubMed  Google Scholar 

  32. Zhang M, Xu YJ, Saini HK et al (2005) Pentoxifylline attenuates cardiac dysfunction and reduces TNF-alpha level in ischemic-reperfused heart. Am J Physiol Heart Circ Physiol 289(2):H832-839

    CAS  PubMed  Google Scholar 

  33. Zhou CN, Yao W, Gong YN et al (2019) 22-oxacalcitriol protects myocardial ischemia-reperfusion injury by suppressing NF-κB/TNF-α pathway. Eur Rev Med Pharmacol Sci 23(12):5495–5502. https://doi.org/10.26355/eurrev_201906_18219

    Article  PubMed  Google Scholar 

  34. Huang XW, Pan MD, Du PH, Wang LX (2018) Arginase-2 protects myocardial ischemia-reperfusion injury via NF-κB/TNF-α pathway. Eur Rev Med Pharmacol Sci 22(19):6529–6537. https://doi.org/10.26355/eurrev_201810_16067

    Article  PubMed  Google Scholar 

  35. Meldrum DR (1998) Tumor necrosis factor in the heart. Am J Physiol Regul Integr Comp Physiol 274:R577–R595

    Google Scholar 

  36. Bajaj G, Sharma RK (2006) TNF-alpha-mediated cardiomyocyte apoptosis involves caspase-12 and calpain. Biochem Biophys Res Commun 345(4):1558–1564

    CAS  PubMed  Google Scholar 

  37. Jarrah AA, Schwarskopf M, Wang ER et al (2018) SDF-1 induces TNF-mediated apoptosis in cardiac myocytes. Apoptosis 23(1):79–91. https://doi.org/10.1007/s10495-017-1438-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Asgeri M, Pourafkari L, Kundra A et al (2015) Dual effects of tumor necrosis factor alpha on myocardial injury following prolonged hypoperfusion of the heart. Immunol Investig 44(1):23–35

    CAS  Google Scholar 

  39. Monden Y, Kubota T, Inoue T et al (2007) Tumor necrosis factor-alpha is toxic via receptor 1 and protective via receptor 2 in a murine model of myocardial infarction. Am J Physiol Heart Circ Physiol 293(1):H743–H753

    CAS  PubMed  Google Scholar 

  40. Kleinbongard P, Heusch G, Schulz R (2010) TNF alpha in atherosclerosis, myocardial ischemia/reperfusion and heart failure. Pharmacol Ther 127(3):295–314. https://doi.org/10.1016/j.pharmthera.2010.05.002

    Article  CAS  PubMed  Google Scholar 

  41. Jeremias I, Kupatt C, Martin-Villalba A et al (2000) Involvement of CD95/Apo1/Fas in cell death after myocardial ischemia. Circulation 102(8):915–920

    CAS  PubMed  Google Scholar 

  42. LeBlanc HN, Ashkenazi A (2003) Apo2L/TRAIL and its death and decoy receptors. Cell Death Differ 10:66–75

    CAS  PubMed  Google Scholar 

  43. Di Bartolo BA, Cartland SP, Prado-Lourenco L et al (2015) Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) promotes angiogenesis and ischemia-induced neovascularization via NADPH oxidase 4 (NOX4) and nitric oxide-dependent mechanisms. J Am Heart Assoc 4(11)pii: e002527. https://doi.org/10.1161/JAHA.115.002527

  44. Nakajima H, Yanase N, Oshima K et al (2003) Enhanced expression of the apoptosis inducing ligand TRAIL in mononuclear cells after myocardial infarction. Jpn Heart J 44(6):833–844

    CAS  PubMed  Google Scholar 

  45. Jiang Y, Chen X, Fan M et al (2017) TRAIL facilitates cytokine expression and macrophage migration during hypoxia/reoxygenation via ER stress-dependent NF-κB pathway. Mol Immunol 82:123–136. https://doi.org/10.1016/j.molimm.2016.12.023

    Article  CAS  PubMed  Google Scholar 

  46. Toffoli B, Bernardi S, Candido R et al (2012) TRAIL shows potential cardioprotective activity. Investig New Drugs 30(3):1257–1260

    CAS  Google Scholar 

  47. Secchiero P, Candido R, Corallini F et al (2006) Systemic tumor necrosis factor-related apoptosisinducing ligand delivery shows antiatherosclerotic activity in apolipoprotein E-null diabetic mice. Circulation 114(14):1522–1530

    CAS  PubMed  Google Scholar 

  48. Secchiero P, Corallini F, Ceconi C et al (2009) Potential prognostic significance of decreased serum levels of TRAIL after acute myocardial infarction. PLoS One 4(2):e4442. https://doi.org/10.1371/journal.pone.0004442

  49. Volpato S, Ferrucci L, Secchiero P et al (2011) Association of tumor necrosis factor-related apoptosis-inducing ligand with total and cardiovascular mortality in older adults. Atherosclerosis 215(2):452–458. https://doi.org/10.1016/j.atherosclerosis.2010.11.004

    Article  CAS  PubMed  Google Scholar 

  50. Deftereos S, Giannopoulos G, Kossyvakis C et al (2012) Association of soluble tumour necrosis factor-related apoptosis-inducing ligand levels with coronary plaque burden and composition. Heart 98(3):214–218. https://doi.org/10.1136/heartjnl-2011-300339

    Article  CAS  PubMed  Google Scholar 

  51. Dessein PH, Lopez-Mejias R, Ubilla B et al (2015) TNF-related apoptosis-inducing ligand and cardiovascular disease in rheumatoid arthritis. Clin Exp Rheumatol 33(4):491–497

    PubMed  Google Scholar 

  52. Teringova E, Kozel M, Knot J et al (2018) Relationship between TRAIL and left ventricular ejection fraction in patients with ST-elevation myocardial infarction treated with primary percutaneous coronary intervention. Biomed Res Int 2018:3709084. https://doi.org/10.1155/2018/3709084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Luz A, Santos M, Magalhães R et al (2017) Soluble TNF-related apoptosis induced ligand (sTRAIL) is augmented by post-conditioning and correlates to infarct size and left ventricle dysfunction in STEMI patients: a substudy from a randomized clinical trial. Heart Vessels 32(2):117–125. https://doi.org/10.1007/s00380-016-0851-9

    Article  PubMed  Google Scholar 

  54. Kruidering M, Evan GI (2000) Caspase-8 in apoptosis: the beginning of “the end”? IUBMB Life 50(2):85–90

    CAS  PubMed  Google Scholar 

  55. Stephanou A, Brar B, Liao Z et al (2001) Distinct initiator caspases are required for the induction of apoptosis in cardiac myocytes during ischaemia versus reperfusion injury. Cell Death Differ 8(4):434–435

    CAS  PubMed  Google Scholar 

  56. Scarabelli TM, Stephanou A, Pasini E et al (2002) Different signaling pathways induce apoptosis in endothelial cells and cardiac myocytes during ischemia/reperfusion injury. Circ Res 90(6):745–748

    CAS  PubMed  Google Scholar 

  57. Roubille F, Combes S, Leal-Sanchez J et al (2007) Myocardial expression of a dominant-negative form of Daxx decreases infarct size and attenuates apoptosis in an in vivo mouse model of ischemia/reperfusion injury. Circulation 116(23):2709–2717

    PubMed  Google Scholar 

  58. Lu X, Moore PG, Liu H, Schaefer S (2011) Phosphorylation of ARC is a critical element in the antiapoptotic effect of anesthetic preconditioning. Anesth Analg 112(3):525–531. https://doi.org/10.1213/ANE.0b013e318205689b

    Article  CAS  PubMed  Google Scholar 

  59. Palee S, Weerateerangkul P, Chinda K et al (2013) Mechanisms responsible for beneficial and adverse effects of rosiglitazone in a rat model of acute cardiac ischaemia-reperfusion. Exp Physiol 98(5):1028–1037. https://doi.org/10.1113/expphysiol.2012.070433

    Article  CAS  PubMed  Google Scholar 

  60. Fauconnier J, Meli AC, Thireau J et al (2011) Ryanodine receptor leak mediated by caspase-8 activation leads to left ventricular injury after myocardial ischemia-reperfusion. Proc Natl Acad Sci USA 108(32):13258–13263. https://doi.org/10.1073/pnas.1100286108

    Article  PubMed  PubMed Central  Google Scholar 

  61. Liang Y, Lin Q, Zhu J et al (2014) The caspase-8 shRNA-modified mesenchymal stem cells improve the function of infarcted heart. Mol Cell Biochem 397(1–2):7–16. https://doi.org/10.1007/s11010-014-2165-5

    Article  CAS  PubMed  Google Scholar 

  62. Levine B, Sinha S, Kroemer G (2008) Bcl-2 family members: dual regulators of apoptosis and autophagy. Autophagy 4(5):600–606

    CAS  PubMed  Google Scholar 

  63. Chen Z, Chua CC, Ho YS et al (2001) Overexpression of Bcl-2 attenuates apoptosis and protects against myocardial I/R injury in transgenic mice. Am J Physiol Heart Circ Physiol 280:H2313–H2320

    CAS  PubMed  Google Scholar 

  64. Misao J, Hayakawa Y, Ohno M et al (1996) Expression of bcl-2 protein, an inhibitor of apoptosis, and Bax, an accelerator of apoptosis, in ventricular myocytes of human hearts with myocardial infarction. Circulation 94:1506–1512

    CAS  PubMed  Google Scholar 

  65. Xing K, Fu X, Jiang L et al (2015) Cardioprotective effect of anisodamine against myocardial ischemia injury and its influence on cardiomyocytes apoptosis. Cell Biochem Biophys 73(3):707–716. https://doi.org/10.1007/s12013-015-0642-4

    Article  CAS  PubMed  Google Scholar 

  66. Li M, Xue L, Sun H, Xu S (2016) Myocardial protective effects of L-Carnitine on ischemia-reperfusion injury in patients with rheumatic valvular heart disease undergoing cardiac surgery. J Cardiothorac Vasc Anesth 30(6):1485–1493. https://doi.org/10.1053/j.jvca.2016.06.006

    Article  CAS  PubMed  Google Scholar 

  67. Hu Q, Luo W, Huang L et al (2016) Apoptosis-related microRNA changes in the right atrium induced by remote ischemic perconditioning during valve replacement surgery. Sci Rep 7(6):18959. https://doi.org/10.1038/srep18959

    Article  CAS  Google Scholar 

  68. Zhu LP, Tian T, Wang JY et al (2018) Hypoxia-elicited mesenchymal stem cell-derived exosomes facilitates cardiac repair through miR-125b-mediated prevention of cell death in myocardial infarction. Theranostics 8(22):6163–6177. https://doi.org/10.7150/thno.28021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Liu Y, Yang L, Yin J et al (2018) MicroRNA-15b deteriorates hypoxia/reoxygenation-induced cardiomyocyte apoptosis by downregulating Bcl-2 and MAPK3. J Investig Med 66(1):39–45. https://doi.org/10.1136/jim-2017-000485

    Article  PubMed  Google Scholar 

  70. Wen Z, Mai Z, Zhu X et al (2020) Mesenchymal stem cell-derived exosomes ameliorate cardiomyocyte apoptosis in hypoxic conditions through microRNA144 by targeting the PTEN/AKT pathway. Stem Cell Res Ther 11(1):36. https://doi.org/10.1186/s13287-020-1563-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kura B, Kalocayova B, Devaux Y, Bartekova M (2020) Potential clinical implications of miR-1 and miR-21 in heart disease and cardioprotection. Int J Mol Sci 21(3)pii:700. https://doi.org/10.3390/ijms21030700.

  72. Honda HM, Korge P, Weiss JN (2005) Mitochondria and ischemia/reperfusion injury. Ann N Y Acad Sci 1047:248–258

    CAS  PubMed  Google Scholar 

  73. Scorrano L, Ashiya M, Buttle K et al (2002) A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev Cell 2(1):55–67

    CAS  PubMed  Google Scholar 

  74. Korge P, Honda HM, Weiss JN (2003) Effects of fatty acids in isolated mitochondria: implications for ischemic injury and cardioprotection. Am J Physiol Heart Circ Physiol 285(1):H259–H269

    CAS  PubMed  Google Scholar 

  75. Borutaite V, Budriunaite A, Morkuniene R, Brown GC (2001) Release of mitochondrial cytochrome c and activation of cytosolic caspases induced by myocardial ischaemia. Biochim Biophys Acta 1537(2):101–109

    CAS  PubMed  Google Scholar 

  76. Kuznetsov AV, Schneeberger S, Seiler R et al (2004) Mitochondrial defects and heterogeneous cytochrome c release after cardiac cold ischemia and reperfusion. Am J Physiol Heart Circ Physiol 286(5):H1633–H1641

    CAS  PubMed  Google Scholar 

  77. Lundberg KC, Szweda LI (2006) Preconditioning prevents loss in mitochondrial function and release of cytochrome c during prolonged cardiac ischemia/reperfusion. Arch Biochem Biophys 453(1):130–134

    CAS  PubMed  Google Scholar 

  78. Skemiene K, Rakauskaite G, Trumbeckaite S et al (2013) Anthocyanins block ischemia-induced apoptosis in the perfused heart and support mitochondrial respiration potentially by reducing cytosolic cytochrome c. Int J Biochem Cell Biol 45(1):23–29. https://doi.org/10.1016/j.biocel.2012.07.022

    Article  CAS  PubMed  Google Scholar 

  79. Dzhanashiya PKh, Vladytskaya OV, Salibegashvili NV (2004) Efficiency and mechanisms of the antioxidant effect of standard therapy and refracterin in the treatment of chronic heart failure in elderly patients with postinfarction cardiosclerosis. Bull Exp Biol Med 138(4):412–414

    CAS  PubMed  Google Scholar 

  80. Qin F, Liang MC, Liang CS (2005) Progressive left ventricular remodeling, myocyte apoptosis, and protein signaling cascades after myocardial infarction in rabbits. Biochim Biophys Acta 1740(3):499–513

    CAS  PubMed  Google Scholar 

  81. Zeng C, Jiang W, Zheng R et al (2018) Cardioprotection of tilianin ameliorates myocardial ischemia-reperfusion injury: role of the apoptotic signaling pathway. PLoS One 13(3):e0193845. https://doi.org/10.1371/journal.pone.0193845

  82. Liu D (2018) Effects of procyanidin on cardiomyocyte apoptosis after myocardial ischemia reperfusion in rats. BMC Cardiovasc Disord 18(1):35. https://doi.org/10.1186/s12872-018-0772-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Huang LH, Li J, Gu JP et al (2018) Butorphanol attenuates myocardial ischemia reperfusion injury through inhibiting mitochondria-mediated apoptosis in mice. Eur Rev Med Pharmacol Sci 22(6):1819–1824. https://doi.org/10.26355/eurrev_201803_14601

    Article  PubMed  Google Scholar 

  84. Condorelli G, Roncarati R, Ross J Jr et al (2001) Heart-targeted overexpression of caspase 3 in mice increases infarct size and depresses cardiac function. Proc Natl Acad Sci USA 98:9977–9982

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Holly TA, Drincic A, Byun Y et al (1999) Caspase inhibition reduces myocyte cell death induced by myocardial ischemia and reperfusion in vivo. J Mol Cell Cardiol 31(9):1709–1715

    CAS  PubMed  Google Scholar 

  86. Pavo N, Lukovic D, Zlabinger K et al (2017) Intrinsic remote conditioning of the myocardium as a comprehensive cardiac response to ischemia and reperfusion. Oncotarget 8(40):67227–67240. https://doi.org/10.18632/oncotarget.18438

    Article  PubMed  PubMed Central  Google Scholar 

  87. Liu Q (2014) Lentivirus mediated interference of caspase-3 expression ameliorates the heart function on rats with acute myocardial infarction. Eur Rev Med Pharmacol Sci 18(13):1852–1858

    CAS  PubMed  Google Scholar 

  88. Hu S, Yan G, Xu H et al (2014) Hypoxic preconditioning increases survival of cardiac progenitor cells via the pim-1 kinase-mediated anti-apoptotic effect. Circ J 78(3):724–731

    CAS  PubMed  Google Scholar 

  89. You L, Pan YY, An MY et al (2019) The cardioprotective effects of remote ischemic conditioning in a rat model of acute myocardial infarction. Med Sci Monit 25:1769–1779. https://doi.org/10.12659/MSM.914916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bartekova M, Šimončíková P, Fogarassyová M, Ivanová M et al (2015) Quercetin improves postischemic recovery of heart function in doxorubicin-treated rats and prevents doxorubicin-induced matrix metalloproteinase-2 activation and apoptosis induction. Int J Mol Sci 16(4):8168–8185. https://doi.org/10.3390/ijms16048168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Li C, Wang T, Zhang C et al (2016) Quercetin attenuates cardiomyocyte apoptosis via inhibition of JNK and p38 mitogen-activated protein kinase signaling pathways. Gene 577(2):275–280. https://doi.org/10.1016/j.gene.2015.12.012

    Article  CAS  PubMed  Google Scholar 

  92. Wang H, Zhao YT, Zhang S et al (2017) Irisin plays a pivotal role to protect the heart against ischemia and reperfusion injury. J Cell Physiol 232(12):3775–3785. https://doi.org/10.1002/jcp.25857

  93. Liu BF, Chen Q, Zhang M, Zhu YK (2019) MiR-124 promotes ischemia-reperfusion induced cardiomyocyte apoptosis by targeting sphingosine kinase 1. Eur Rev Med Pharmacol Sci 23(16):7049–7058. https://doi.org/10.26355/eurrev_201908_18747

  94. Tan H, Qi J, Fan BY et al (2018) MicroRNA-24-3p attenuates myocardial ischemia/reperfusion injury by suppressing RIPK1 expression in mice. Cell Physiol Biochem 51(1):46–62. https://doi.org/10.1159/000495161

  95. Chen Z, Su X, Shen Y et al (2019) MiR322 mediates cardioprotection against ischemia/reperfusion injury via FBXW7/notch pathway. J Mol Cell Cardiol 133:67–74. https://doi.org/10.1016/j.yjmcc.2019.05.020

  96. Saini U, Gumina RJ, Wolfe B et al (2013) Preconditioning mesenchymal stem cells with caspase inhibition and hyperoxia prior to hypoxia exposure increases cell proliferation. J Cell Biochem 114(11):2612–2623. https://doi.org/10.1002/jcb.24609

  97. Knaapen MW, Davies MJ, De Bie M et al (2001) Apoptotic versus autophagic cell death in heart failure. Cardiovasc Res 51(2):304–312

    CAS  PubMed  Google Scholar 

  98. Chapman JG, Magee WP, Stukenbrok HA et al (2002) A novel nonpeptidic caspase-3/7 inhibitor, (S)-(+)-5-[1-(2-methoxymethylpyrrolidinyl)-sulfonyl]isatin reduces myocardial ischemic injury. Eur J Pharmacol 456(1–3):59–68

    CAS  PubMed  Google Scholar 

  99. Zhao L, Zhuang J, Wang Y et al (2019) Propofol ameliorates H9c2 cells apoptosis induced by oxygen glucose geprivation and reperfusion injury via inhibiting high levels of mitochondrial fusion and fission. Front Pharmacol 10:61. https://doi.org/10.3389/fphar.2019.00061

  100. Fischer UM, Tossios P, Huebner A et al (2004) Myocardial apoptosis prevention by radical scavenging in patients undergoing cardiac surgery. J Thorac Cardiovasc Surg 128(1):103–108

    CAS  PubMed  Google Scholar 

  101. Aslanabadi N, Shirzadi HR, Asghari-Soufi H et al (2015) A pilot randomized trial of pentoxifylline for the reduction of periprocedural myocardial injury in patients undergoing elective percutaneous coronary intervention. Eur J Clin Pharmacol 71(2):143–149. https://doi.org/10.1007/s00228-014-1782-y

    Article  CAS  PubMed  Google Scholar 

  102. Mansourian S, Bina P, Fehri A et al (2015) Preoperative oral pentoxifylline in case of coronary artery bypass grafting with left ventricular dysfunction (ejection fraction equal to/less than 30%). Anatol J Cardiol 15(12):1014–1019. https://doi.org/10.5152/akd.2014.5883

    Article  CAS  PubMed  Google Scholar 

  103. Wolfe F, Michaud K (2004) Heart failure in rheumatoid arthritis: rates, predictors, and the effect of anti-tumor necrosis factor therapy. Am J Med 116(5):305–311

    PubMed  Google Scholar 

  104. Dixon WG, Watson KD, Lunt M et al (2007) Reduction in the incidence of myocardial infarction in patients with rheumatoid arthritis who respond to anti-tumor necrosis factor alpha therapy: results from the British society for rheumatology biologics register. Arthritis Rheum 56(9):2905–2912

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Barnabe C, Martin BJ, Ghali WA (2011) Systematic review and meta-analysis: anti-tumor necrosis factor α therapy and cardiovascular events in rheumatoid arthritis. Arthritis Care Res 63(4):522–529

    CAS  Google Scholar 

  106. Wu JJ, Poon KY, Bebchuk JD (2013) Association between the type and length of tumor necrosis factor inhibitor therapy and myocardial infarction risk in patients with psoriasis. J Drugs Dermatol 12(8):899–903

    CAS  PubMed  Google Scholar 

  107. Armstrong AW (2013) Do TNF inhibitors reduce the risk of myocardial infarction in psoriasis patients? JAMA 309(19):2043–2044

    CAS  PubMed  Google Scholar 

  108. Mann DL, McMurray JJ, Packer M et al (2004) Targeted anticytokine therapy in patients with chronic heart failure: results of the randomized Etanercept Worldwide Evaluation (RENEWAL). Circulation 109(13):1594–1602

    CAS  PubMed  Google Scholar 

  109. Padfield GJ, Din JN, Koushiappi E et al (2013) Cardiovascular effects of tumour necrosis factor α antagonism in patients with acute myocardial infarction: a first in human study. Heart 99(18):1330–1335

    CAS  PubMed  Google Scholar 

  110. Chung ES, Packer M, Lo KH et al (2003) Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-α, in patients with moderate-to-severe heart failure: results of the anti-TNF therapy against congestive heart failure (ATTACH) trial. Circulation 107(25):3133–3140

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.B. is supported by grant from the Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and the Slovak Academy of Sciences VEGA no. 2/0104/20. The infrastructure support for this project was provided by the St. Boniface Hospital Research Foundation, Winnipeg, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Bartekova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bartekova, M., Shah, A.K., Dhalla, N.S. (2022). Apoptosis in Ischemic Heart Disease. In: Kirshenbaum, L.A. (eds) Biochemistry of Apoptosis and Autophagy. Advances in Biochemistry in Health and Disease, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-030-78799-8_3

Download citation

Publish with us

Policies and ethics