Skip to main content

Advertisement

Log in

Novel mechanisms for caspase inhibition protecting cardiac function with chronic pressure overload

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Myocyte apoptosis is considered a major mechanism in the pathogenesis of heart failure. Accordingly, manipulations that inhibit apoptosis are assumed to preserve cardiac function by maintaining myocyte numbers. We tested this assumption by examining the effects of caspase inhibition (CI) on cardiac structure and function in C57BL/6 mouse with pressure overload model induced by transverse aortic constriction (TAC). CI preserved left ventricular (LV) function following TAC compared with the vehicle. TAC increased apoptosis in non-myocytes more than in myocytes and these increases were blunted more in non-myocytes by CI. Total myocyte number, however, did not differ significantly among control and TAC groups and there was no correlation between myocyte number and apoptosis, but there was a strong correlation between myocyte number and an index of myocyte proliferation, Ki67-positive myocytes. Despite comparable pressure gradients, LV hypertrophy was less in the CI group, likely attributable to decreased wall stress. Since changes in myocyte numbers did not account for protection from TAC, several other CI-mediated mechanisms were identified including: (a) lessening of TAC-induced fibrosis, (b) augmentation of isolated myocyte contractility, and (c) increased angiogenesis and Ki67-positive myocytes, which were due almost entirely to the non-myocyte apoptosis, but not myocyte apoptosis, with CI. CI maintained LV function following TAC not by protecting against myocyte loss, but rather by augmenting myocyte contractile function, myocyte proliferation, and angiogenesis resulting in reduced LV wall stress, hypertrophy, and fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Balakumar P, Singh M (2006) The possible role of caspase-3 in pathological and physiological cardiac hypertrophy in rats. Basic Clin Pharmacol Toxicol 99:418–424

    Article  PubMed  CAS  Google Scholar 

  2. Chandrashekhar Y, Sen S, Anway R, Shuros A, Anand I (2004) Long-term caspase inhibition ameliorates apoptosis, reduces myocardial troponin-I cleavage, protects left ventricular function, and attenuates remodeling in rats with myocardial infarction. J Am Coll Cardiol 43:295–301

    Article  PubMed  CAS  Google Scholar 

  3. Colman H, Giannini C, Huang L, Gonzalez J, Hess K, Bruner J, Fuller G, Langford L, Pelloski C, Aaron J, Burger P, Aldape K (2006) Assessment and prognostic significance of mitotic index using the mitosis marker phospho-histone H3 in low and intermediate-grade infiltrating astrocytomas. Am J Surg Pathol 30:657–664

    Article  PubMed  Google Scholar 

  4. Colston JT, Boylston WH, Feldman MD, Jenkinson CP, de la Rosa SD, Barton A, Trevino RJ, Freeman GL, Chandrasekar B (2007) Interleukin-18 knockout mice display maladaptive cardiac hypertrophy in response to pressure overload. Biochem Biophys Res Commun 354:552–558

    Article  PubMed  CAS  Google Scholar 

  5. Condorelli G, Morisco C, Stassi G, Notte A, Farina F, Sgaramella G, de Rienzo A, Roncarati R, Trimarco B, Lembo G (1999) Increased cardiomyocyte apoptosis and changes in proapoptotic and antiapoptotic genes bax and bcl-2 during left ventricular adaptations to chronic pressure overload in the rat. Circulation 99:3071–3078

    Article  PubMed  CAS  Google Scholar 

  6. Condorelli G, Roncarati R, Ross J Jr, Pisani A, Stassi G, Todaro M, Trocha S, Drusco A, Gu Y, Russo MA, Frati G, Jones SP, Lefer DJ, Napoli C, Croce CM (2001) Heart-targeted overexpression of caspase3 in mice increases infarct size and depresses cardiac function. Proc Natl Acad Sci USA 98:9977–9982

    Article  PubMed  CAS  Google Scholar 

  7. Dolle RE, Hoyer D, Prasad CV, Schmidt SJ, Helaszek CT, Miller RE, Ator MA (1994) P1 aspartate-based peptide alpha-((2,6-dichlorobenzoyl)oxy)methyl ketones as potent time-dependent inhibitors of interleukin-1 beta-converting enzyme. J Med Chem 37:563–564

    Article  PubMed  CAS  Google Scholar 

  8. Givvimani S, Tyagi N, Sen U, Mishra PK, Qipshidze N, Munjal C, Vacek JC, Abe OA, Tyagi SC (2010) MMP-2/TIMP-2/TIMP-4 versus MMP-9/TIMP-3 in transition from compensatory hypertrophy and angiogenesis to decompensatory heart failure. Arch Physiol Biochem 116:63–72

    Article  PubMed  CAS  Google Scholar 

  9. Hayakawa Y, Chandra M, Miao W, Shirani J, Brown JH, Dorn GW 2nd, Armstrong RC, Kitsis RN (2003) Inhibition of cardiac myocyte apoptosis improves cardiac function and abolishes mortality in the peripartum cardiomyopathy of Galpha(q) transgenic mice. Circulation 108:3036–3041

    Article  PubMed  CAS  Google Scholar 

  10. Hesketh GG, Shah MH, Halperin VL, Cooke CA, Akar FG, Yen TE, Kass DA, Machamer CE, Van Eyk JE, Tomaselli GF (2010) Ultrastructure and regulation of lateralized connexin43 in the failing heart. Circ Res 106:1153–1163

    Article  PubMed  CAS  Google Scholar 

  11. Hittinger L, Mirsky I, Shen YT, Patrick TA, Bishop SP, Vatner SF (1995) Hemodynamic mechanisms responsible for reduced subendocardial coronary reserve in dogs with severe left ventricular hypertrophy. Circulation 92:978–986

    Article  PubMed  CAS  Google Scholar 

  12. Kabaeva Z, Zhao M, Michele DE (2008) Blebbistatin extends culture life of adult mouse cardiac myocytes and allows efficient and stable transgene expression. Am J Physiol Heart Circ Physiol 294:H1667–H1674

    Article  PubMed  CAS  Google Scholar 

  13. Kajstura J, Gurusamy N, Ogorek B, Goichberg P, Clavo-Rondon C, Hosoda T, D’Amario D, Bardelli S, Beltrami AP, Cesselli D, Bussani R, del Monte F, Quaini F, Rota M, Beltrami CA, Buchholz BA, Leri A, Anversa P (2010) Myocyte turnover in the aging human heart. Circ Res 107:1374–1386

    Article  PubMed  CAS  Google Scholar 

  14. Karahashi H, Amano F (2000) Changes of caspase activities involved in apoptosis of a macrophage-like cell line J774.1/JA-4 treated with lipopolysaccharide (LPS) and cycloheximide. Biol Pharm Bull 23:140–144

    Article  PubMed  CAS  Google Scholar 

  15. Laplante P, Sirois I, Raymond MA, Kokta V, Beliveau A, Prat A, Pshezhetsky AV, Hebert MJ (2010) Caspase-3-mediated secretion of connective tissue growth factor by apoptotic endothelial cells promotes fibrosis. Cell Death Differ 17:291–303

    Article  PubMed  CAS  Google Scholar 

  16. Li XM, Ma YT, Yang YN, Liu F, Chen BD, Han W, Zhang JF, Gao XM (2009) Downregulation of survival signalling pathways and increased apoptosis in the transition of pressure overload-induced cardiac hypertrophy to heart failure. Clin Exp Pharmacol Physiol 36:1054–1061

    Article  PubMed  CAS  Google Scholar 

  17. Lorell BH, Carabello BA (2000) Left ventricular hypertrophy: pathogenesis, detection, and prognosis. Circulation 102:470–479

    Article  PubMed  CAS  Google Scholar 

  18. Meguro T, Hong C, Asai K, Takagi G, McKinsey TA, Olson EN, Vatner SF (1999) Cyclosporine attenuates pressure-overload hypertrophy in mice while enhancing susceptibility to decompensation and heart failure. Circ Res 84:735–740

    Article  PubMed  CAS  Google Scholar 

  19. Moorjani N, Ahmad M, Catarino P, Brittin R, Trabzuni D, Al-Mohanna F, Narula N, Narula J, Westaby S (2006) Activation of apoptotic caspase cascade during the transition to pressure overload-induced heart failure. J Am Coll Cardiol 48:1451–1458

    Article  PubMed  CAS  Google Scholar 

  20. Novoyatleva T, Diehl F, van Amerongen MJ, Patra C, Ferrazzi F, Bellazzi R, Engel FB (2010) TWEAK is a positive regulator of cardiomyocyte proliferation. Cardiovasc Res 85:681–690

    Article  PubMed  CAS  Google Scholar 

  21. Okoshi MP, Matsubara LS, Franco M, Cicogna AC, Matsubara BB (1997) Myocyte necrosis is the basis for fibrosis in renovascular hypertensive rats. Braz J Med Biol Res 30:1135–1144

    Article  PubMed  CAS  Google Scholar 

  22. Park M, Shen YT, Gaussin V, Heyndrickx GR, Bartunek J, Resuello RR, Natividad FF, Kitsis RN, Vatner DE, Vatner SF (2009) Apoptosis predominates in nonmyocytes in heart failure. Am J Physiol Heart Circ Physiol 297:H785–H791

    Article  PubMed  CAS  Google Scholar 

  23. Rota M, Kajstura J, Hosoda T, Bearzi C, Vitale S, Esposito G, Iaffaldano G, Padin-Iruegas ME, Gonzalez A, Rizzi R, Small N, Muraski J, Alvarez R, Chen X, Urbanek K, Bolli R, Houser SR, Leri A, Sussman MA, Anversa P (2007) Bone marrow cells adopt the cardiomyogenic fate in vivo. Proc Natl Acad Sci USA 104:17783–17788

    Article  PubMed  CAS  Google Scholar 

  24. Sasano C, Honjo H, Takagishi Y, Uzzaman M, Emdad L, Shimizu A, Murata Y, Kamiya K, Kodama I (2007) Internalization and dephosphorylation of connexin43 in hypertrophied right ventricles of rats with pulmonary hypertension. Circ J 71:382–389

    Article  PubMed  CAS  Google Scholar 

  25. Scholzen T, Gerdes J (2000) The Ki-67 protein: from the known and the unknown. J Cell Physiol 182:311–322

    Article  PubMed  CAS  Google Scholar 

  26. Sharov VG, Sabbah HN, Shimoyama H, Goussev AV, Lesch M, Goldstein S (1996) Evidence of cardiocyte apoptosis in myocardium of dogs with chronic heart failure. Am J Pathol 148:141–149

    PubMed  CAS  Google Scholar 

  27. Sun Y, Weber KT (2005) Animal models of cardiac fibrosis. Methods Mol Med 117:273–290

    PubMed  CAS  Google Scholar 

  28. Tamamori-Adachi M, Takagi H, Hashimoto K, Goto K, Hidaka T, Koshimizu U, Yamada K, Goto I, Maejima Y, Isobe M, Nakayama KI, Inomata N, Kitajima S (2008) Cardiomyocyte proliferation and protection against post-myocardial infarction heart failure by cyclin D1 and Skp2 ubiquitin ligase. Cardiovasc Res 80:181–190

    Article  PubMed  CAS  Google Scholar 

  29. van Empel VP, Bertrand AT, Hofstra L, Crijns HJ, Doevendans PA, De Windt LJ (2005) Myocyte apoptosis in heart failure. Cardiovasc Res 67:21–29

    Article  PubMed  Google Scholar 

  30. Wencker D, Chandra M, Nguyen K, Miao W, Garantziotis S, Factor SM, Shirani J, Armstrong RC, Kitsis RN (2003) A mechanistic role for cardiac myocyte apoptosis in heart failure. J Clin Invest 111:1497–1504

    PubMed  CAS  Google Scholar 

  31. Wollmuth JR, Bree DR, Cupps BP, Krock MD, Pomerantz BJ, Pasque RP, Howells A, Moazami N, Kouchoukos NT, Pasque MK (2006) Left ventricular wall stress in patients with severe aortic insufficiency with finite element analysis. Ann Thorac Surg 82:840–846

    Article  PubMed  Google Scholar 

  32. Xia Y, Lee K, Li N, Corbett D, Mendoza L, Frangogiannis NG (2009) Characterization of the inflammatory and fibrotic response in a mouse model of cardiac pressure overload. Histochem Cell Biol 131:471–481

    Article  PubMed  CAS  Google Scholar 

  33. Yu Q, Vazquez R, Khojeini EV, Patel C, Venkataramani R, Larson DF (2009) IL-18 induction of osteopontin mediates cardiac fibrosis and diastolic dysfunction in mice. Am J Physiol Heart Circ Physiol 297:H76–H85

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health [Grant number: HL093481, HL106511, HL033107, HL095888, HL69020, HL60665, and AG27211].

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Misun Park.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 2,472 kb)

Supplementary material 2 (DOC 31 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, M., Vatner, S.F., Yan, L. et al. Novel mechanisms for caspase inhibition protecting cardiac function with chronic pressure overload. Basic Res Cardiol 108, 324 (2013). https://doi.org/10.1007/s00395-012-0324-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-012-0324-y

Keywords

Navigation