Skip to main content
Log in

Interferon regulatory factor 9 is an essential mediator of heart dysfunction and cell death following myocardial ischemia/reperfusion injury

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

This study aimed to investigate whether interferon regulatory factor 9 (IRF9) is involved in the pathogenesis of myocardial ischemia–reperfusion (I/R) injury and to explore the underlying molecular mechanisms of this process. Cell death plays a major role in myocardial I/R injury. We recently determined the importance of IRF9 in coordinating molecular events in response to hypertrophic stress in cardiomyocytes. However, the roles of IRF9 in lethal myocardial injury remain to be elucidated. The involvement of IRF9 was assessed via functional assays in a mouse myocardial I/R injury model by genetic knockout and cardiomyocyte-specific transgenic overexpression of IRF9, and its effects on cardiomyocyte apoptosis and inflammation were further studied in vivo and in vitro. IRF9 was upregulated in human ischemic heart tissue and mouse hearts after I/R injury. Ablation of IRF9 protected the heart against I/R-induced cardiomyocyte death, development of inflammation, and loss of heart function. In contrast, cardiomyocyte-specific transgenic overexpression of IRF9 aggravated myocardial reperfusion injury and inflammation. IRF9 negatively regulated the Sirt1-p53 axis under I/R conditions in vivo and in vitro. Downregulation of Sirt1 expression and its downstream apoptosis-related signaling cascade, which results from I/R, was ameliorated by loss of IRF9 and exacerbated by overexpression of IRF9. Cardiomyocyte-specific deletion of Sirt1 abolished the protective effect of IRF9 knockout against I/R injury, which further indicated that IRF9 mediated myocardial reperfusion injury by modulating the Sirt1-p53 axis. Thus, IRF9 may be a novel therapeutic target for the prevention of I/R injury resulting from revascularization therapy after acute myocardial infarction (MI).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Alcendor RR, Kirshenbaum LA, Imai S, Vatner SF, Sadoshima J (2004) Silent information regulator 2alpha, a longevity factor and class III histone deacetylase, is an essential endogenous apoptosis inhibitor in cardiac myocytes. Circ Res 95:971–980. doi:10.1161/01.RES.0000147557.75257.ff

    Article  PubMed  CAS  Google Scholar 

  2. Blander G, Guarente L (2004) The Sir2 family of protein deacetylases. Annu Rev Biochem 73:417–435. doi:10.1146/annurev.biochem.73.011303.073651

    Article  PubMed  CAS  Google Scholar 

  3. Chen K, Gao L, Liu Y, Zhang Y, Jiang DS, Wei X, Zhu XH, Zhang R, Chen Y, Yang Q, Kioka N, Zhang XD, Li H (2013) Vinexin-beta protects against cardiac hypertrophy by blocking the Akt-dependent signalling pathway. Basic Res Cardiol 108:338. doi:10.1007/s00395-013-0338-0

    Article  PubMed  Google Scholar 

  4. Cheng HL, Mostoslavsky R, Saito S, Manis JP, Gu Y, Patel P, Bronson R, Appella E, Alt FW, Chua KF (2003) Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci USA 100:10794–10799. doi:10.1073/pnas.1934713100

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Frangogiannis NG, Smith CW, Entman ML (2002) The inflammatory response in myocardial infarction. Cardiovasc Res 53:31–47

    Article  PubMed  CAS  Google Scholar 

  6. Frohlich GM, Meier P, White SK, Yellon DM, Hausenloy DJ (2013) Myocardial reperfusion injury: looking beyond primary PCI. Eur Heart J 34:1714–1722. doi:10.1093/eurheartj/eht090

    Article  PubMed  Google Scholar 

  7. Hausenloy DJ, Yellon DM (2013) Myocardial ischemia-reperfusion injury: a neglected therapeutic target. J Clin Invest 123:92–100. doi:10.1172/JCI62874

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Heusch G, Libby P, Gersh B, Yellon D, Bohm M, Lopaschuk G, Opie L (2014) Cardiovascular remodelling in coronary artery disease and heart failure. Lancet 383:1933–1943. doi:10.1016/S0140-6736(14)60107-0

    Article  PubMed  Google Scholar 

  9. Hofmann U, Frantz S (2013) How can we cure a heart “in flame”? A translational view on inflammation in heart failure. Basic Res Cardiol 108:356. doi:10.1007/s00395-013-0356-y

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hsu CP, Zhai P, Yamamoto T, Maejima Y, Matsushima S, Hariharan N, Shao D, Takagi H, Oka S, Sadoshima J (2010) Silent information regulator 1 protects the heart from ischemia/reperfusion. Circulation 122:2170–2182. doi:10.1161/CIRCULATIONAHA.110.958033

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jenner RG, Young RA (2005) Insights into host responses against pathogens from transcriptional profiling. Nat Rev Microbiol 3:281–294. doi:10.1038/nrmicro1126

    Article  PubMed  CAS  Google Scholar 

  12. Jiang DS, Bian ZY, Zhang Y, Zhang SM, Liu Y, Zhang R, Chen Y, Yang Q, Zhang XD, Fan GC, Li H (2013) Role of interferon regulatory factor 4 in the regulation of pathological cardiac hypertrophy. Hypertension 61:1193–1202. doi:10.1161/HYPERTENSIONAHA.111.00614

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Jiang DS, Li L, Huang L, Gong J, Xia H, Liu X, Wan N, Wei X, Zhu X, Chen Y, Chen X, Zhang XD, Li H (2014) Interferon regulatory factor 1 is required for cardiac remodeling in response to pressure overload. Hypertension 64:77–86. doi:10.1161/HYPERTENSIONAHA.114.03229

    Article  PubMed  CAS  Google Scholar 

  14. Jiang DS, Liu Y, Zhou H, Zhang Y, Zhang XD, Zhang XF, Chen K, Gao L, Peng J, Gong H, Chen Y, Yang Q, Liu PP, Fan GC, Zou Y, Li H (2014) Interferon regulatory factor 7 functions as a novel negative regulator of pathological cardiac hypertrophy. Hypertension 63:713–722. doi:10.1161/HYPERTENSIONAHA.113.02653

    Article  PubMed  CAS  Google Scholar 

  15. Jiang DS, Luo YX, Zhang R, Zhang XD, Chen HZ, Zhang Y, Chen K, Zhang SM, Fan GC, Liu PP, Liu DP, Li H (2014) Interferon regulatory factor 9 protects against cardiac hypertrophy by targeting myocardin. Hypertension 63:119–127. doi:10.1161/HYPERTENSIONAHA.113.02083

    Article  PubMed  CAS  Google Scholar 

  16. Jiang DS, Wei X, Zhang XF, Liu Y, Zhang Y, Chen K, Gao L, Zhou H, Zhu XH, Liu PP, Bond Lau W, Ma X, Zou Y, Zhang XD, Fan GC, Li H (2014) IRF8 suppresses pathological cardiac remodelling by inhibiting calcineurin signalling. Nat Commun 5:3303. doi:10.1038/ncomms4303

    PubMed  PubMed Central  Google Scholar 

  17. Jiang DS, Zhang XF, Gao L, Zong J, Zhou H, Liu Y, Zhang Y, Bian ZY, Zhu LH, Fan GC, Zhang XD, Li H (2014) Signal regulatory protein-alpha protects against cardiac hypertrophy via the disruption of toll-like receptor 4 signaling. Hypertension 63:96–104. doi:10.1161/HYPERTENSIONAHA.113.01506

    Article  PubMed  CAS  Google Scholar 

  18. Kaisho T, Akira S (2006) Toll-like receptor function and signaling. J Allergy Clin Immunol 117:979–987. doi:10.1016/j.jaci.2006.02.023 (quiz 988)

    Article  PubMed  CAS  Google Scholar 

  19. Lawrence T, Natoli G (2011) Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol 11:750–761. doi:10.1038/nri3088

    Article  PubMed  CAS  Google Scholar 

  20. Lee JT, Gu W (2013) SIRT1: regulator of p53 deacetylation. Genes Cancer 4:112–117. doi:10.1177/1947601913484496

    Article  PubMed  PubMed Central  Google Scholar 

  21. Li HL, Zhuo ML, Wang D, Wang AB, Cai H, Sun LH, Yang Q, Huang Y, Wei YS, Liu PP, Liu DP, Liang CC (2007) Targeted cardiac overexpression of A20 improves left ventricular performance and reduces compensatory hypertrophy after myocardial infarction. Circulation 115:1885–1894. doi:10.1161/CIRCULATIONAHA.106.656835

    Article  PubMed  CAS  Google Scholar 

  22. Liu P, Xu B, Cavalieri TA, Hock CE (2008) Inhibition of p53 by pifithrin-alpha reduces myocyte apoptosis and leukocyte transmigration in aged rat hearts following 24 hours of reperfusion. Shock 30:545–551. doi:10.1097/SHK.0b013e31816a192d

    Article  PubMed  CAS  Google Scholar 

  23. Longo VD, Kennedy BK (2006) Sirtuins in aging and age-related disease. Cell 126:257–268. doi:10.1016/j.cell.2006.07.002

    Article  PubMed  CAS  Google Scholar 

  24. Lu J, Bian ZY, Zhang R, Zhang Y, Liu C, Yan L, Zhang SM, Jiang DS, Wei X, Zhu XH, Chen M, Wang AB, Chen Y, Yang Q, Liu PP, Li H (2013) Interferon regulatory factor 3 is a negative regulator of pathological cardiac hypertrophy. Basic Res Cardiol 108:326. doi:10.1007/s00395-012-0326-9

    Article  PubMed  Google Scholar 

  25. Mandl A, Huong Pham L, Toth K, Zambetti G, Erhardt P (2011) Puma deletion delays cardiac dysfunction in murine heart failure models through attenuation of apoptosis. Circulation 124:31–39. doi:10.1161/CIRCULATIONAHA.110.988303

    Article  PubMed  CAS  Google Scholar 

  26. Nathan C, Ding A (2010) Nonresolving inflammation. Cell 140:871–882. doi:10.1016/j.cell.2010.02.029

    Article  PubMed  CAS  Google Scholar 

  27. Rauch I, Muller M, Decker T (2013) The regulation of inflammation by interferons and their STATs. JAKSTAT 2:e23820. doi:10.4161/jkst.23820

    PubMed  PubMed Central  Google Scholar 

  28. Savitsky D, Tamura T, Yanai H, Taniguchi T (2010) Regulation of immunity and oncogenesis by the IRF transcription factor family. Cancer Immunol Immunother 59:489–510. doi:10.1007/s00262-009-0804-6

    Article  PubMed  CAS  Google Scholar 

  29. Sundaresan NR, Pillai VB, Gupta MP (2011) Emerging roles of SIRT1 deacetylase in regulating cardiomyocyte survival and hypertrophy. J Mol Cell Cardiol 51:614–618. doi:10.1016/j.yjmcc.2011.01.008

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Takaoka A, Hayakawa S, Yanai H, Stoiber D, Negishi H, Kikuchi H, Sasaki S, Imai K, Shibue T, Honda K, Taniguchi T (2003) Integration of interferon-alpha/beta signalling to p53 responses in tumour suppression and antiviral defence. Nature 424:516–523. doi:10.1038/nature01850

    Article  PubMed  CAS  Google Scholar 

  31. Taniguchi T, Ogasawara K, Takaoka A, Tanaka N (2001) IRF family of transcription factors as regulators of host defense. Annu Rev Immunol 19:623–655. doi:10.1146/annurev.immunol.19.1.623

    Article  PubMed  CAS  Google Scholar 

  32. Timmers L, Pasterkamp G, de Hoog VC, Arslan F, Appelman Y, de Kleijn DP (2012) The innate immune response in reperfused myocardium. Cardiovasc Res 94:276–283. doi:10.1093/cvr/cvs018

    Article  PubMed  CAS  Google Scholar 

  33. Tu S, Liu ZQ, Fu JJ, Zhu WF, Luo DY, Wan FS (2012) Inhibitory effect of p53 upregulated modulator of apoptosis targeting siRNA on hypoxia/reoxygenation-induced cardiomyocyte apoptosis in rats. Cardiology 122:93–100. doi:10.1159/000338701

    Article  PubMed  CAS  Google Scholar 

  34. Vakhrusheva O, Smolka C, Gajawada P, Kostin S, Boettger T, Kubin T, Braun T, Bober E (2008) Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ Res 102:703–710. doi:10.1161/CIRCRESAHA.107.164558

    Article  PubMed  CAS  Google Scholar 

  35. Wang XA, Zhang R, Jiang D, Deng W, Zhang S, Deng S, Zhong J, Wang T, Zhu LH, Yang L, Hong S, Guo S, Chen K, Zhang XF, She Z, Chen Y, Yang Q, Zhang XD, Li H (2013) Interferon regulatory factor 9 protects against hepatic insulin resistance and steatosis in male mice. Hepatology 58:603–616. doi:10.1002/hep.26368

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Yue TL, Bao W, Jucker BM, Gu JL, Romanic AM, Brown PJ, Cui J, Thudium DT, Boyce R, Burns-Kurtis CL, Mirabile RC, Aravindhan K, Ohlstein EH (2003) Activation of peroxisome proliferator-activated receptor-alpha protects the heart from ischemia/reperfusion injury. Circulation 108:2393–2399. doi:10.1161/01.CIR.0000093187.42015.6C

    Article  PubMed  CAS  Google Scholar 

  37. Zheng W, Lu YB, Liang ST, Zhang QJ, Xu J, She ZG, Zhang ZQ, Yang RF, Mao BB, Xu Z, Li L, Hao DL, Lu J, Wei YS, Chen HZ, Liu DP (2013) SIRT1 mediates the protective function of Nkx2.5 during stress in cardiomyocytes. Basic Res Cardiol 108:364. doi:10.1007/s00395-013-0364-y

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the valuable technological assistance that Rui Zhang, Xue-Yong Zhu, Zhang-Li Li, Miao Yin, Qiang Wang and Xin Zhang provided for this study. This work was supported by grants from the National Natural Science Foundation of China (No.81170086, No. 81100230, No. 81070089, No. 81200071, No. 81270306, No. 81270184, and No. 81370365), National Science and Technology Support Project (No. 2011BAI15B02, No. 2012BAI39B05, No. 2013YQ030923-05, and 2014BAI02B01), the National Basic Research Program of China (No. 2011CB503902), the Key Project of the National Natural Science Foundation (No. 81330005), the Key Project of the Natural Science Foundation of Hubei province (No. 2013CFA077) and the Independent Scientific Research Project of Wuhan University (No. 2042014kf0194).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongliang Li.

Additional information

Y. Zhang, X. Liu, and Z.-G. She are co-first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 667 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Liu, X., She, ZG. et al. Interferon regulatory factor 9 is an essential mediator of heart dysfunction and cell death following myocardial ischemia/reperfusion injury. Basic Res Cardiol 109, 434 (2014). https://doi.org/10.1007/s00395-014-0434-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-014-0434-9

Keywords

Navigation