Skip to main content
Log in

Development of auditory sensitivity in the barn owl

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Adult barn owl hearing is acute, but development of this sense is not well understood. We, therefore, measured auditory brainstem responses in barn owls from before the onset of hearing (posthatch day 2, or P2) to adulthood (P69). The first consistent responses were detected at P4 for 1 and 2 kHz, followed by responses to 0.5 and 4 kHz at P9, and 5 kHz at P13. Sensitivity to higher frequencies increased with age, with responses to 12 kHz appearing about 2 months after hatching, once the facial ruff was mature. Therefore, these altricial birds achieve their sensitivity to sound during a prolonged period of development, which coincides with maturation of the skull and facial ruff (Haresign and Moiseff in Auk 105:699–705, 1988).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Brittan-Powell EF, Dooling RJ (2004) Development of auditory sensitivity in budgerigars (Melopsittacus undulatus). J Acoust Soc Am 115:3092–3102

    Article  PubMed  Google Scholar 

  • Brittan-Powell EF, Dooling RJ, Gleich O (2002) Auditory brainstem responses in adult budgerigars. (Melopsittacus undulatus). J Acoust Soc Am 112:999–1008

    Article  PubMed  Google Scholar 

  • Brittan-Powell EF, Lohr B, Hahn DC, Dooling RJ (2005) Auditory brainstem responses in the eastern screech owl: an estimate of auditory thresholds. J Acoust Soc Am 118:314–321

    Article  PubMed  Google Scholar 

  • Bunn DS, Warburton AB, Wilson R (2010) The barn owl. AandC Black Publishers Ltd, London

    Google Scholar 

  • Burkard R, McGee J, Walsh EJ (1996) Effects of stimulus rate on the feline brain-stem auditory evoked response during development. I. Peak latencies. J Acoust Soc Am 100:978–990

    Article  CAS  PubMed  Google Scholar 

  • Campenhausen M, Wagner H (2006) Influence of the facial ruff on the sound-receiving characteristics of the barn owl’s ears. J Comp Physiol A 192:1073–1082

    Article  Google Scholar 

  • Caras ML, Brenowitz E, Rubel EW (2010) Peripheral auditory processing changes seasonally in Gambel’s white-crowned sparrow. J Comp Physiol A 196:581–599

    Article  Google Scholar 

  • Carr CE, Boudreau RE (1996) Development of the time coding pathways in the auditory brainstem of the barn owl. J Comp Neurol 373:467–483

    Article  CAS  PubMed  Google Scholar 

  • Carr CE, Kubke MF, Massoglia D, Rigby L, and Moiseff A (1997) Development of temporal coding circuits in the barn owl. In: Psychophysical and physiological advances in hearing edit rees, AR Palmer and R Meddis, pp 344–351

  • Cheng SM, Carr CE (2007) Functional delay of myelination of auditory delay lines in the nucleus laminaris of the barn owl. Dev Neurobiol 67:1957–1974

    Article  PubMed  PubMed Central  Google Scholar 

  • Corwin JT, Bullock TH, Schweitzer J (1982) The auditory brain stem response in five vertebrate classes. Electroencephalogr Clin Neurophysiol 54:629–641

    Article  CAS  PubMed  Google Scholar 

  • Crowell SE, Berlin A, Carr CE, Olsen GH, Therrien RE, Yannuzzi SE, Ketten DR (2015) A comparison of auditory brainstem responses across diving bird species. J Comp Physiol A 201:803–815

    Article  Google Scholar 

  • Dooling RJ, Lohr B, Dent ML (2000) Hearing in birds and reptiles. In: Gentner TQ (ed) Comparative hearing: birds and reptiles. Springer, New York, pp 308–359

    Chapter  Google Scholar 

  • Doyle WJ, Saad MM, Fria TJ (1983) Maturation of the auditory brain stem response in rhesus monkeys (Macaca mulatta). Electroencephalogr Clin Neurophysiol 56:210–223

    Article  CAS  PubMed  Google Scholar 

  • Dum N (1984) Postnatal development of the auditory evoked brainstem potentials in the guinea pig. Acta Otolaryngol 97:63–68

    Article  CAS  PubMed  Google Scholar 

  • Dyson ML, Klump GM, Gauger B (1998) Absolute hearing thresholds and critical masking ratios in the European barn owl: a comparison with other owls. J Comp Physiol A 182:695–702

    Article  Google Scholar 

  • Echteler SM, Arjmand E, Dallos P (1989) Developmental alterations in the frequency map of the mammalian cochlea. Nature 341:147–149

    Article  CAS  PubMed  Google Scholar 

  • Fay RR (1988) Hearing in vertebrates: a psychophysics databook. Hill-Fay Associates, Winnetka

    Google Scholar 

  • Gold JI, Knudsen EI (2000) Abnormal auditory experience induces frequency-specific adjustments in unit tuning for binaural localization cues in the optic tectum of juvenile owls. J Neurosci 20:862–877

    CAS  PubMed  Google Scholar 

  • Graven SN, Browne JV (2008) Auditory development in the fetus and infant. Newborn Infant Nurs Rev 8:187–193

    Article  Google Scholar 

  • Hall JW (2007) New handbook of auditory evoked responses. Pearson, Boston

    Google Scholar 

  • Haresign T, Moiseff A (1988) Early growth and development of the common barn-owl’s facial ruff. Auk 105:699–705

    Google Scholar 

  • Hausmann L, Plachta DTT, Singheiser M, Brill S, Wagner H (2008) In-flight corrections in free-flying barn owls (Tyto alba) during sound localization tasks. J Exp Biol 211:2976–2988

    Article  PubMed  Google Scholar 

  • Hausmann L, von Campenhausen M, Endler F, Singheiser M, Wagner H (2009) Improvements of sound localization abilities by the facial ruff of the barn owl (Tyto alba) as demonstrated by virtual ruff removal. PLoS ONE 4:e7721

    Article  PubMed  PubMed Central  Google Scholar 

  • Hood LJ (1998) Clinical applications of the auditory brainstem response (evoked potentials), 1st edn. Delmar Cengage Learning, Clifton Park

    Google Scholar 

  • Katayama A (1985) Postnatal development of auditory function in the chicken revealed by auditory brainstem responses (ABRs). Electroencephalogr Clin Neurophysiol 62:388–398

    Article  CAS  PubMed  Google Scholar 

  • Keller CH, Hartung K, Takahashi TT (1998) Head-related transfer functions of the barn owl: measurement and neural responses. Hear Res 118:13–34

    Article  CAS  PubMed  Google Scholar 

  • Knudsen EI (2002) Instructed learning in the auditory localization pathway of the barn owl. Nature 417:322–328

    Article  CAS  PubMed  Google Scholar 

  • Knudsen EI, Knudsen PF, Esterly SD (1984) A critical period for the recovery of sound localization accuracy following monaural occlusion in the barn owl. J Neurosci 4:1012–1020

    CAS  PubMed  Google Scholar 

  • Konishi M (1973) How the owl tracks its prey. Am Sci 61:414–424

    Google Scholar 

  • Köppl C (1997) Phase locking to high frequencies in the auditory nerve and cochlear nucleus magnocellularis of the barn owl, Tyto alba. J Neurosci 17:3312–3321

    PubMed  Google Scholar 

  • Köppl C, Nickel R (2007) Prolonged maturation of cochlear function in the barn owl after hatching. J Comp Physiol A 193:613–624

    Article  Google Scholar 

  • Köppl C, Futterer E, Nieder B, Sistermann R, Wagner H (2005) Embryonic and posthatching development of the barn owl (Tyto alba): reference data for age determination. Dev Dyn 23:1248–1260

    Article  Google Scholar 

  • Kubke M, Carr CE (2000) Development of the auditory brainstem of birds: comparison between barn owls and chickens. Hear Res 147:1–20

    Article  CAS  PubMed  Google Scholar 

  • Kubke M, Massoglia D, Carr CE (2002) Developmental changes underlying the formation of the specialized time coding circuits in barn owls (Tyto alba). J Neuro 22:7671–7679

    CAS  Google Scholar 

  • Kubke M, Massoglia D, Carr CE (2004) Bigger brains or bigger nuclei? Regulating the size of auditory structures in birds. Brain Behav Evol 2004:169–180

    Article  Google Scholar 

  • Leake PA, Snyder RL, Hradek GT (2002) Postnatal refinement of auditory nerve projections to the cochlear nucleus in cats. J Comp Neurol 448:6–27

    Article  PubMed  PubMed Central  Google Scholar 

  • Lippe WR (1987) Shift of tonotopic organization in brain stem auditory nuclei of the chicken during late embryonic development. Hear Res 25:205–208

    Article  CAS  PubMed  Google Scholar 

  • Lippe W, Rubel EW (1985) Ontogeny of tonotopic organization of brain stem auditory nuclei in the chicken: implications for development of the place principle. J Comp Neuro 237:273–289

    Article  CAS  Google Scholar 

  • Lohr B, Brittan-Powell EF, Dooling RJ (2013) Auditory brainstem responses and auditory thresholds in woodpeckers. J Acoust Soc Am 133:337–342

    Article  PubMed  PubMed Central  Google Scholar 

  • Mann ZF, Kelley MW (2011) Development of tonotopy in the auditory periphery. Hear Res 276:2–15

    Article  PubMed  Google Scholar 

  • Marcoux AM (2011) Maturation of auditory function related to hearing threshold estimations using the auditory brainstem response during infancy. Int J Pediatr Otorhinolaryngol 75:163–170

    Article  PubMed  Google Scholar 

  • Melcher JR, Kiang NYS (1996) Generators of the brainstem auditory evoked potential in cat III: identified cell populations. Hear Res 93:52–71

    Article  CAS  PubMed  Google Scholar 

  • Miller GL, Knudsen EI (2001) Early auditory experience induces frequency-specific adaptive plasticity in the forebrain gaze fields of the barn owl. J Neurophysiol 85:2184–2194

    CAS  PubMed  Google Scholar 

  • Miller GL, Knudsen EI (2003) Adaptive plasticity in the auditory thalamus of juvenile barn owls. J Neurosci 23:1059–1065

    CAS  PubMed  Google Scholar 

  • Momose-Sato Y, Glover J, Sato K (2006) Development of functional synaptic connections in the auditory system visualized with optical recording: afferent-evoked activity is present from early stages. J Neurophysiol 96:1949–1962

    Article  PubMed  Google Scholar 

  • Müller M (1996) The cochlear place-frequency map of the adult and developing Mongolian gerbil. Hear Res 94:148–156

    Article  PubMed  Google Scholar 

  • Ngan EM, May BJ (2001) Relationship between the auditory brainstem response and auditory nerve thresholds in cats with hearing loss. Hear Res 156:44–52

    Article  CAS  PubMed  Google Scholar 

  • Noirot IC, Brittan-Powell EF, Dooling RJ (2011) Masked auditory thresholds in three species of birds as measured by the auditory brainstem response (L). J Acoust Soc Am 129:3445–3448

    Article  PubMed  PubMed Central  Google Scholar 

  • Okanoya K, Dooling RJ (1987) Hearing in passerine and psittacine birds: a comparative study of absolute and masked auditory thresholds. J Comp Psychol 101:7–15

    Article  CAS  PubMed  Google Scholar 

  • Palanca-Castan N, Laumen G, Reed D, Köppl C (2016) The binaural interaction component in barn owl (Tyto alba) presents few differences to mammalian data. JARO 17:577–589

    Article  PubMed  Google Scholar 

  • Payne RS (1971) Acoustic location of prey by barn owls (Tyto alba). J Exp Biol 54:535–573

    CAS  PubMed  Google Scholar 

  • Peña JL, DeBello WM (2010) Auditory processing, plasticity, and learning in the barn owl. ILAR J 51:338–352

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramos N, Almeida MG, Lewis DR (2013) Correlation between frequency-specific auditory brainstem responses and behavioral hearing assessment in children with hearing loss. Rev CEFAC 15:796–802

    Article  Google Scholar 

  • Rich V, Carr C (1999) Husbandry and captive rearing of barn owls. Poult Avian Biol Rev 10:91–95

    Google Scholar 

  • Ricklefs RE, Starck JM (1998) Embryonic growth and development. In: Ricklefs RE, Starck JM (eds) Avian growth and development: evolution within the altricial-precocial spectrum. Oxford University Press, Oxford, pp 31–58

    Google Scholar 

  • Romand R (1997) Modification of tonotopic representation in the auditory system during development. Prog Neurobiol 51:1–17

    Article  CAS  PubMed  Google Scholar 

  • Rubel EW (1978) Ontogeny of structure and function in the vertebrate auditory system. In: Jacobson M (ed) Handbook of sensory physiology. Springer, Berlin, pp 135–237

    Google Scholar 

  • Rubel EW, Popper AN, Fay RR (1998) Development of the auditory system. Springer handbook of auditory research. Springer, New York

    Google Scholar 

  • Saunders JC, Coles RB, Gates GR (1973) The development of auditory evoked responses in the cochlea and cochlear nuclei of the chick. Brain Res 63:59–74

    Article  CAS  PubMed  Google Scholar 

  • Shipley C, Buchwald JS, Norman R, Guthrie D (1980) Brain stem auditory evoked response development in the kitten. Brain Res 182:313–326

    Article  CAS  PubMed  Google Scholar 

  • Smith DI, Kraus N (1987) Postnatal development of the auditory brainstem response (ABR) in the unanesthetized gerbil. Hear Res 27:157–164

    Article  CAS  PubMed  Google Scholar 

  • Snyder RL, Leake PA (1997) Topography of spiral ganglion projections to cochlear nucleus during postnatal development in cats. J Comp Neurol 384:293–311

    Article  CAS  PubMed  Google Scholar 

  • Song L, McGee J, Walsh EJ (2006) Frequency- and level-dependent changes in auditory brainstem responses (ABRs) in developing mice. J Acoust Soc Am 119:2242–2257

    Article  PubMed  Google Scholar 

  • Walsh EJ, McGee J, Javel E (1986a) Development of auditory evoked potentials in the cat. I. Onset of response and development of sensitivity. J Acoust Soc Am 79:712–724

    Article  CAS  PubMed  Google Scholar 

  • Walsh EJ, McGee J, Javel E (1986b) Development of auditory-evoked potentials in the cat. III. Wave amplitudes. J Acoust Soc Am 79:745–754

    Article  CAS  PubMed  Google Scholar 

  • Walsh EJ, Gorga M, McGee J (1992) Comparisons of the development of auditory brainstem response latencies between cats and humans. Hear Res 60:53–63

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge Dr. E. Brittan-Powell for the help with calibration and ABR recording, and Dr. E. Smith for help with equipment, speaker setup, and calibration. This research was sponsored by the National Institute on Deafness and Other Communications Disorders (NIDCD) Grant DC-000436 (CEC). Recordings from owls were performed in concordance with the NIH Guidelines for Animal Research and were approved by the Animal Care and Use Committee of the University of Maryland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Kraemer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 111 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kraemer, A., Baxter, C., Hendrix, A. et al. Development of auditory sensitivity in the barn owl. J Comp Physiol A 203, 843–853 (2017). https://doi.org/10.1007/s00359-017-1197-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-017-1197-1

Keywords

Navigation