Skip to main content
Log in

How aquatic water-beetle larvae with small chambered eyes overcome challenges of hunting under water

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

A particularly unusual visual system exists in the visually guided aquatic predator, the Sunburst Diving Beetle, Thermonectus marmoratus (Coleoptera: Dytiscidae). The question arises: how does this peculiar visual system function? A series of experiments suggests that their principal eyes (E1 and E2) are highly specialized for hunting. These eyes are tubular and have relatively long focal lengths leading to high image magnification. Their retinae are linear, and are divided into distinct green-sensitive distal and UV and polarization-sensitive proximal portions. Each distal retina, moreover, has many tiers of photoreceptors with rhabdomeres the long axis of which are peculiarly oriented perpendicular to the light path. Based on detailed optical investigations, the lenses of these eyes are bifocal and project focused images onto specific retinal tiers. Behavioral experiments suggest that these larvae approach prey within their eyes’ near-fields, and that they can correctly gauge prey distances even when conventional distance-vision mechanisms are unavailable. In the near-field of these eyes object distance determines which of the many retinal layers receive the best-focused images. This retinal organization could facilitate an unusual distance-vision mechanism. We here summarize past findings and discuss how these eyes allow Thermonectus larvae to be such successful predators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PR:

Proximal retina

DR:

Distal retina

References

  • Arikawa K (2003) Spectral organization of the eye of a butterfly, Papilio. J Comp Phys A 189:791–800

  • Bland K, Revetta NP, Stowasser A, Buschbeck EK (2014) Unilateral range finding in diving beetle larvae. J Exp Biol 214:327–330

    Article  Google Scholar 

  • Blest AD, Hardie RC, McIntyre P, Williams DS (1981) The spectral sensitivities of identified receptors and the function of retinal tiering in the principal eyes of a jumping spider. J Comp Physiol 145:227–239

    Article  Google Scholar 

  • Buschbeck EK (2014) Escaping compound eye ancestry: the evolution of single-chamber eyes in holometabolous larvae. J Exp Biol 217:2818–2824

    Article  PubMed  Google Scholar 

  • Buschbeck EK, Ehmer B, Hoy R (1999) Chunk versus point sampling: visual imaging in a small insect. Science 286:1178–1180

    Article  PubMed  CAS  Google Scholar 

  • Buschbeck EK, Sbita SJ, Morgan RC (2007) Scanning behavior by larvae of the predacious diving beetle, Thermonectus marmoratus (Coleoptera: Dytiscidae) enlarges visual field prior to prey capture. J Comp Physiol A 193:973–982

    Article  Google Scholar 

  • Cartwright B, Collett T (1979) How honey-bees know their distance from a near-by visual landmark. J Exp Biol 82:367–372

    Google Scholar 

  • Chaudhuri S, Rajagopalan AN (1999) Depth from defocus: a real aperture imaging approach. Springer, Berlin, Heidelberg, New York, Toronto

    Google Scholar 

  • Chung W-S, Marshall J (2014) Range-finding in squid using retinal deformation and image blur. Curr Biol 24:R64–R65

    Article  PubMed  CAS  Google Scholar 

  • Clarkson E, Levi-Setti R, Horváth G (2006) The eyes of trilobites: the oldest preserved visual system. Arthropod Struct Dev 35:247–259

    Article  PubMed  Google Scholar 

  • Clemente CJ, McMaster KA, Fox E, Meldrum L, Stewart T, Main BY (2010) The visual system of the Australian wolf spider Lycosa leuckartii (Araneae: Lycosidae): visual acuity and the functional role of the eyes. J Arachnol 38:398–406

    Article  Google Scholar 

  • Collett TS (1978) Peering-a locust behaviour pattern for obtaining motion parallax information. J Exp Biol 76:237–241

    Google Scholar 

  • Collett TS, Harkness LIK (1982) Depth vision in animals. In: Ingle D, Goodale MA, Mansfield RJW (eds) Analysis of visual behavior. MIT Press, Cambridge, pp 111–176

    Google Scholar 

  • Collett TS, Land MF (1975) Visual control of flight behaviour in the hoverfly Syritta pipiens L. J Comp Physiol 99:1–66

    Article  Google Scholar 

  • Cronin TW (2006) Invertebrate vision in water. In: Warrant EJ, Nilsson D-E (eds) Invertebrate vision. Cambridge University Press, New York, pp 211–249

    Google Scholar 

  • Cronin TW, Marshall J (2011) Patterns and properties of polarized light in air and water. Phil Trans R Soc B 366:619–626

    Article  PubMed  PubMed Central  Google Scholar 

  • Duelli P (1978) Movement detection in the posterolateral eyes of jumping spiders (Evarcha arcuata, Salticidae). J Comp Physiol 124:15–26

    Article  Google Scholar 

  • Egri Á, Horváth G (2012) Possible optical functions of the central core in lenses of trilobite eyes: spherically corrected monofocality or bifocality. J Opt Soc Am A 29:1965–1976

    Article  CAS  Google Scholar 

  • Evans AV, Hogue JN (2006) Field guide to beetles of California. University of California Press, Berkeley

    Google Scholar 

  • Forster L (1979) Visual mechanisms of hunting behavior in Trite planiceps—a jumping spider. N Z J Zool 6:79–93

    Article  Google Scholar 

  • Forster L (1982) Vision and prey-catching strategies in jumping spiders. Am Sci 70:165–175

    Google Scholar 

  • Gál J, Horváth G, Clarkson ENK (2000a) Reconstruction of the shape and optics of the lenses in the abathochroal-eyed trilobite Neocobboldia chinlinica. Hist Biol 14:193–204

    Article  Google Scholar 

  • Gál J, Horváth G, Clarkson ENK, Haiman O (2000b) Image formation by bifocal lenses in a trilobite eye? Vis Res 40:843–853

    Article  PubMed  Google Scholar 

  • Goulet M, Campan R, Lambin M (1981) The visual perception of relative distances in the wood-cricket, Nemobius sylvestris. Physiol Entomol 6:357–367

    Article  Google Scholar 

  • Grenacher H (1879) Untersuchungen über das Sehorgan der Arthropoden: insbesondere der Spinnen. Insecten und Crustaceen. Verlag vonVandenhoeck & Ruprecht, Göttingen

    Google Scholar 

  • Günther K (1911) Die Sehorgane der Larve und Imago von Dytiscus marginalis. Z Wiss Zool ABT A 100:60–115

    Google Scholar 

  • Gupta N, Naroo SA, Wolffsohn JS (2009) Visual comparison of multifocal contact lens to monovision. Optom Vis Sci 86:E98–E105

    Article  PubMed  Google Scholar 

  • Held RT, Cooper EA, Banks MS (2012) Blur and disparity are complementary cues to depth. Curr Biol 22:426–431

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hofbauer A, Buchner E (1989) Does Drosophila have 7 eyes? Naturwissenschaften 76:335–336

    Article  Google Scholar 

  • Horváth G, Varjú D (2004) Polarized light in animal vision: polarization patterns in nature. Springer, Berlin, Heidelberg, New York, Toronto

    Book  Google Scholar 

  • Kral K (1999) Binocular vision and distance estimation. In: Prete FR, Wells H, Wells PH (eds) The praying mantids. JHU Press, Baltimor

    Google Scholar 

  • Kral K (2009) Comparison of the use of active vision for depth perception in three grasshopper families (Orthoptera: Caelifera). Ann Entomol Soc Am 102:339–345

    Article  Google Scholar 

  • Kral K (2012) The functional significance of mantis peering behaviour. Eur J Entomol 109:295–301

    Article  Google Scholar 

  • Land MF (1969a) Movements of the retinae of jumping spiders (Salticidae: Dendryphantinae) in response to visual stimuli. J Exp Biol 51:471–493

    PubMed  CAS  Google Scholar 

  • Land MF (1969b) Structure of the retinae of the principal eyes of jumping spiders (Salticidae: Dendryphantinae) in relation to visual optics. J Exp Biol 51:443–470

    PubMed  CAS  Google Scholar 

  • Land MF (1972) Mechanisms of orientation and pattern recognition by jumping spiders (Salticidae). In: Wehner R (ed) Information processing in the visual systems of anthropods. Springer, Berlin, Heidelberg, New York, Toronto, pp 231–247

    Chapter  Google Scholar 

  • Land MF (1982) Scanning eye movements in a heteropod mollusc. J Exp Biol 96:427–430

    Google Scholar 

  • Land MF (1988) The functions of eye and body movements in Labidocera and other copepods. J Exp Biol 140:381–391

    Google Scholar 

  • Land MF, Nilsson D-E (2012) Animal eyes. Oxford University Press, New York

    Book  Google Scholar 

  • Land MF, Marshall JN, Brownless D, Cronin TW (1990) The eye-movements of the mantis shrimp Odontodactylus scyllarus (Crustacea: Stomatopoda). J Comp Physiol A 167:155–166

    Article  Google Scholar 

  • Larson DJ, Alarie Y, Roughley RE (2009) Predaceous Diving Beetles (Coleoptera: Dytiscidae) of the Nearctic Region, with emphasis on the fauna of Canada and Alaska. NRC Research Press, Ottawa

    Google Scholar 

  • Lee MR, Torney C, Owen AW (2007) Magnesium-rich intralensar structures in schizochroal trilobite eyes. Palaeontology 50:1031–1037

    Article  Google Scholar 

  • Lewis JE, Maler L (2002) Blurring of the senses: common cues for distance perception in diverse sensory systems. Neuroscience 114:19–22

    Article  PubMed  CAS  Google Scholar 

  • Maksimovic S, Cook T, Buschbeck EK (2009) Spatial distribution of opsin encoding mRNAs in the tiered larval retinas of the Sunburst Diving Beetle Thermonectus marmoratus (Coleoptera: Dytiscidae). J Exp Biol 212:3781–3794

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Maksimovic S, Layne JE, Buschbeck EK (2011) Spectral sensitivity of the principal eyes of Sunburst Diving Beetle, Thermonectus marmoratus (Coleoptera: Dytiscidae), larvae. J Exp Biol 214:3524–3531

    Article  PubMed  Google Scholar 

  • Mandapaka K, Morgan RC, Buschbeck EK (2006) Twenty-eight retinas but only twelve eyes: an anatomical analysis of the larval visual system of the diving beetle Thermonectus marmoratus (Coleoptera: Dytiscidae). J Comp Neurol 497:166–181

    Article  PubMed  Google Scholar 

  • Mather G (1997) The use of image blur as a depth cue. Reception 26:1147–1158

    CAS  Google Scholar 

  • Mather G, Smith DRR (2000) Depth cue integration: stereopsis and image blur. Vis Res 40:3501–3506

    Article  PubMed  CAS  Google Scholar 

  • Morgan RC (1992) Natural history, captive management and the display of the Sunburst Diving Beetle Thermonectus marmoratus. In: AAZPA/CAZPA annual conference proceedings, pp 457–464

  • Nagata T, Koyanagi M, Tsukamoto H, Saeki S, Isono K, Shichida Y, Tokunaga F, Kinoshita M, Arikawa K, Terakita A (2012) Depth perception from image defocus in a jumping spider. Science 335:469–471

    Article  PubMed  CAS  Google Scholar 

  • Packer M (2011) Multifocal intraocular lens technology: biomaterial, optical design and review of clinical outcomes. Expert Rev Ophthalmol 6:437–448

    Article  Google Scholar 

  • Patten W (1887) Studies on the eyes of arthropods. 1. Development of the eyes of vespa, with observations on the ocelli of some insects. J Morphol 1:193–226

    Article  Google Scholar 

  • Patten W (1888) Studies on the eyes of arthropods. II. Eyes of Acilius. J Morphol 2:97–190

    Article  Google Scholar 

  • Pentland AP (1987) A new sense for depth of field. IEEE Trans Pattern Anal 9:523–531

    Article  CAS  Google Scholar 

  • Poteser M, Kral K (1995) Visual distance discrimination between stationary targets in praying mantis: an index of the use of motion parallax. J Exp Biol 198:2127–2137

    PubMed  Google Scholar 

  • Rajkumar P, Rollmann SM, Cook TA, Layne JE (2010) Molecular evidence for color discrimination in the Atlantic sand fiddler crab, Uca pugilator. J Exp Biol 213:4240–4248

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sabbah S, Shashar N (2006) Polarization contrast of zooplankton: a model for polarization-based sighting distance. Vis Res 46:444–456

    Article  PubMed  Google Scholar 

  • Sbita SJ, Morgan RC, Buschbeck EK (2007) Eye and optic lobe metamorphosis in the Sunburst Diving Beetle, Thermonectus marmoratus (Coleoptera: Dytiscidae). Arth Struct Dev 36:449–462

    Article  Google Scholar 

  • Schöne H (1951) Die Lichtorientierung der Larven von Acilius sulcatus L. und Dytiscus marginalis L. Z vergl Physiol 33:63–98

    Article  Google Scholar 

  • Schwind R (1989) Size and distance perception in compound eyes. In: Stavenga DG, Hardie RC (eds) Facets of vision. Springer, Berlin, Heidelberg, New York, Toronto, pp 425–444

    Chapter  Google Scholar 

  • Schwind R (1991) Polarization vision in water insects and insects living on a moist substrate. J Comp Physiol A 169:531–540

    Article  Google Scholar 

  • Schwind R (1999) Daphnia pulex swims towards the most strongly polarized light—a response that leads to “shore flight”. J Exp Biol 202:3631–3635

    PubMed  Google Scholar 

  • Sharkey CR, Roberts NW, Partridge JC (2012) The role of polarized light in prey capture in an aquatic predator. Front behavioural neuroscience conference abstract: tenth international congress of neuroethology

  • Sharkey CR, Roberts NW, Partridge JC (2013) Dragonfly larval polarization sensitivity as a contrast enhancer in turbid water. Front physiology conference abstract: international conference on invertebrate vision

  • Shashar N, Hagan R, Boal JG, Hanlon RT (2000) Cuttlefish use polarization sensitivity in predation on silvery fish. Vis Res 40:71–75

    Article  PubMed  CAS  Google Scholar 

  • Shashar N, Johnsen S, Lerner A, Sabbah S, Chiao C-C, Mäthger LM, Hanlon RT (2011) Underwater linear polarization: physical limitations to biological functions. Philos Trans R Soc B 366:649–654

    Article  Google Scholar 

  • Sobel EC (1990) The locust’s use of motion parallax to measure distance. J Comp Physiol A 167:579–588

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan MV, Lehrer M, Zhang SW, Horridge GA (1989) How honeybees measure their distance from objects of unknown size. J Comp Physiol A 165:605–613

    Article  Google Scholar 

  • Stecher N, Morgan R, Buschbeck EK (2010) Retinal ultrastructure may mediate polarization sensitivity in larvae of the Sunburst Diving Beetle, Thermonectus marmoratus (Coleoptera: Dytiscidae). Zoomorphology 129:141–152

    Article  Google Scholar 

  • Stowasser A, Buschbeck EK (2012) Electrophysiological evidence for polarization sensitivity in the camera-type eyes of the aquatic predacious insect larva Thermonectus marmoratus. J Exp Biol 215:3577–3586

    Article  PubMed  Google Scholar 

  • Stowasser A, Buschbeck EK (2014) Multitasking in a larval eye: how the unusual organization of the principal eyes of Thermonectus marmoratus allows for far and near vision and might aid in depth perception. J Exp Biol 217:2509–2516

    Article  PubMed  Google Scholar 

  • Stowasser A, Rapaport A, Layne JE, Morgan RC, Buschbeck EK (2010) Biological bifocal lenses with image separation. Curr Biol 20:1482–1486

    Article  PubMed  CAS  Google Scholar 

  • Toh Y, Okamura J-Y (2001) Behavioral responses of the tiger beetle larva to moving objects: role of binocular and monocular vision. J Exp Biol 204:615–625

    PubMed  CAS  Google Scholar 

  • Toh Y, Okamura J-Y (2007) Morphological and optical properties of the corneal lens and retinal structure in the posterior large stemma of the tiger beetle larva. Vis Res 47:1756–1768

    Article  PubMed  Google Scholar 

  • Veleri S, Rieger D, Helfrich-Förster C, Stanewsky R (2007) Hofbauer-Buchner eyelet affects circadian photosensitivity and coordinates TIM and PER expression in Drosophila clock neurons. J Biol Rhythms 22:29–42

    Article  PubMed  Google Scholar 

  • Via SE (1977) Visually mediated snapping in the bulldog ant: a perceptual ambiguity between size and distance. J Comp Physiol A 121:33–51

    Article  Google Scholar 

  • Warrant EJ, McIntyre PD (1993) Arthropod eye design and the physical limits to spatial resolving power. Prog Neurobiol 40:413–461

    Article  PubMed  CAS  Google Scholar 

  • Wehner R, Labhart T (2006) Polarisation vision. In: Warrant EJ, Nilsson D-E (eds) Invertebrate Vision. Cambridge University Press, New York, pp 291–348

    Google Scholar 

  • Wojtusiak R (1929) Über Lichtreaktionen normaler und geblendeter Acilius-larven. Acta Biol Exp Warszawa 3:165–174

    Google Scholar 

  • Zeil J (1993) Orientation flights of solitary wasps (Cerceris; Sphecidae; Hymenoptera). J Comp Physiol A 172:189–205

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Buschbeck lab group for helpful discussions. Drs. Tiffany Cook and Ilya Vilinsky provided valuable intellectual and editorial feedback. This work was supported by the National Science Foundation under Grants IOS0545978 and IOS1050754 to EKB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elke K. Buschbeck.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stowasser, A., Buschbeck, E.K. How aquatic water-beetle larvae with small chambered eyes overcome challenges of hunting under water. J Comp Physiol A 200, 911–922 (2014). https://doi.org/10.1007/s00359-014-0944-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-014-0944-9

Keywords

Navigation