Skip to main content

Size and Distance Perception in Compound Eyes

  • Conference paper
Facets of Vision

Abstract

Several arthropods show by their behavior that they are able to measure the absolute distance or to gauge the absolute size of a nearby object, be it a prey, a mate or anything onto which the animal is going to jump (revs. Wehner 1981 ; Collett and Harkness 1982; Collett 1987).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Baldus K (1926) Experimentelle Untersuchungen über die Entfernungslokalisation der Libellen (Aeschna cyanea). Z Vergl Physiol 3:475–505.

    Article  Google Scholar 

  • Bauer T (1981) Prey capture and structure of the visual space of an insect that hunts by light on the litter layer (Notiophilus biguttatus F., Carabidae, Coleoptera). Behav Ecol Sociobiol 8:91–97.

    Article  Google Scholar 

  • Bauer T (1985a) Beetles which use a setal trap to hunt springtails: The hunting strategy and apparatus of Leistus (Coleóptera, Carabidae). Pedobiologia 28:275–287.

    Google Scholar 

  • Bauer T (1985b) Different adaptation to visual hunting in three ground beetle species of the same genus. J Insect Physiol 31:593–603.

    Article  Google Scholar 

  • Bauers C (1953) Der Fixierbereich des Insektenauges. Z Vergl Physiol 34:589–605.

    Article  Google Scholar 

  • Bishop PO (1973) Neurophysiology of binocular single vision and stereopsis. In: Jung R (ed) Handbook of sensory physiology, vol VII/3A. Springer, Berlin Heidelberg New York, pp 255–305.

    Google Scholar 

  • Burkhardt D, de la Motte I (1983) How stalk-eyed flies eye stalk-eyed flies: observations and measurements of the eyes of Cyrtodiopsis whitei (Diopsidae, Diptera). J Comp Physiol A 151:407–422.

    Article  Google Scholar 

  • Burkhardt D, de la Motte I (1985) Selective pressures, variability, and sexual dimorphism in stalk-eyed flies (Diopsidae). Naturwissenschaften 72:204–206.

    Article  Google Scholar 

  • Burkhardt D, Darnhofer-Demar B, Fischer K (1973) Zum binokularen Entfernungssehen der Insekten. I. Die Struktur des Sehraums von Synsekten. J Comp Physiol 87:165–188.

    Article  Google Scholar 

  • Clarkson ENK (1966) Schizochroal eyes and vision in some phacopid trilobites. Palaeontology 9:464–487.

    Google Scholar 

  • Clarkson ENK, Levi-Setti R (1975) Trilobite eyes and the optics of Descartes and Huygens. Nature (London) 254:663–667.

    Article  CAS  Google Scholar 

  • Cloarec A (1986) Distance and size discrimination in a water stick insect, Ranatra linearis (Heteroptera). J Exp Biol 120:59–77.

    Google Scholar 

  • Collett TS (1978) Peering — a locust behavior pattern for obtaining motion parallax information. J Exp Biol 76:237–241.

    Google Scholar 

  • Collett TS (1987) Binocular depth vision in arthropods. TINS 10:1–2.

    Google Scholar 

  • Collett TS, Harkness L (1982) Depth vision in animals. In: Ingle DJ, Goodale MA, Mansfield RJW (eds) Analysis of visual behavior. MIT, Cambridge London, pp 111–176.

    Google Scholar 

  • Collett TS, Land MF (1975) Visual control of flight behavior in the hoverfly Syritta pipiens L. J Comp Physiol A 99:1–66.

    Article  Google Scholar 

  • Crane J (1975) Fiddler crabs of the world. Univ Press, Princeton, NJ.

    Google Scholar 

  • de la Motte I, Burkhardt D (1983) Portrait of an Asian stalk-eyed fly. Naturwissenschaften 70:451–461.

    Article  Google Scholar 

  • Demoll R (1909) Über die Beziehungen zwischen der Ausdehnung des binokularen Sehraumes und dem Nahrungserwerb bei einigen Insekten. Zool Jahrb Abt Syst Geogr Biol 28:523–530.

    Google Scholar 

  • Dietrich W (1909) Die Facettaugen der Dipteren. Z Wiss Zool 92:465–539.

    Google Scholar 

  • Egelhaaf M (1985) On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. Biol Cybernet 52:123–280.

    Article  Google Scholar 

  • Eriksson ES (1980) Movement parallax and distance perception in the grasshopper (Phaulacridium vittatum (Sjöstedt). J Exp Biol 86:337–341.

    Google Scholar 

  • Etienne AS (1969) Analyse der schlagauslösenden Bewegungsparameter einer punktförmigen Beuteatrappe bei der Aeschnalarve. Z Vergl Physiol 64:71–110.

    Article  Google Scholar 

  • Exner S (1891) Die Physiologie der facettirten Augen von Krebsen und Insecten. Deuticke, Leipzig Wien.

    Book  Google Scholar 

  • Frantsevich LI, Pichka VE (1976) The size of the binocular zone of the visual field in insects. J Evol Biochem Physiol (USSR) 12:461–465 (in Russian).

    CAS  Google Scholar 

  • Friederichs HF (1931) Beiträge zur Morphologie und Physiologie der Sehorgane der Cicindeliden (Coleoptera). Z Morphol Ökol Tiere 21:1–172.

    Article  Google Scholar 

  • Goulet M, Campman R, Lambin M (1981) The visual perception of relative distances in the wood-cricket, Nemobius sylvestris. Physiol Entomol 6:357–367.

    Article  Google Scholar 

  • Graham CH (1965) Visual space perception. In: Graham CH (ed) Vision and visual perception. John Wiley & Sons, New York, pp 504–547.

    Google Scholar 

  • Hengstenberg R (1971) Das Augenmuskelsystem der Stubenfiege Musca domestica. I. Analyse der “clock-spikes” und ihrer Quellen. Kybernetik 9:56–77.

    Article  PubMed  CAS  Google Scholar 

  • Heran H, Lindauer M (1963) Windkompensation und Seitenwindkorrektur der Bienen beim Flug über Wasser. Z Vergl Physiol 47:39–55.

    Article  Google Scholar 

  • Hoppenheit M (1964) Beobachtungen zum Beutefangverhalten der Larve von Aeschna cyanea Müll. (Odonata) Zool Anz 172:216–232.

    Google Scholar 

  • Horridge GA (1977) Insects which turn and look. Endeavour N Ser 1:7–17.

    Article  Google Scholar 

  • Horridge GA (1978) The separation of visual axes in apposition eyes. Philos Trans R Soc London Ser B 285:1–59.

    Article  CAS  Google Scholar 

  • Horridge GA (1986) A theory of insect vision: velocity parallax. Proc R Soc London Ser B 229:13–27.

    Article  Google Scholar 

  • Horridge GA (1987) The evolution of visual processing and the construction of seeing systems. Proc R Soc London Ser B 230:279–292.

    Article  CAS  Google Scholar 

  • Maldonado H, Barrós-Pita JC (1970) A fovea in the praying mantis eye. I. Estimation of the catching distance. Z Vergl Physiol 67:58–78.

    Article  Google Scholar 

  • Maldonado H, Levin L (1967) Distance estimation and the monocular cleaning reflex in praying mantis. Z Vergl Physiol 56:258–267.

    Article  Google Scholar 

  • Maldonado H, Levin L, Barrós-Pita JC (1967) Hit distance and the predatory strike of the praying mantis. Z Vergl Physiol 56:237–257.

    Article  Google Scholar 

  • Maldonado H, Benko M, Isern M (1970) Study of the role of binocular vision in mantids to estimate long distances, using the deimatic reaction as experimental situation. Z Vergl Physiol 68:72–83.

    Article  Google Scholar 

  • Mittelstaedt H (1957) Prey capture in mantids. In: Scher BT (ed) Recent advances in Invertebrate Physiology. Univ Oregon Publ, pp 51-71.

    Google Scholar 

  • Ogle KN (1962) The optical space sense. In: Davson H (ed) The Eye, vol 4, Pt 2. Academic Press, New York London pp 211–417.

    Google Scholar 

  • Pichka VE (1976) Visual pathways in the protocerebrum of the dronefly Eristalis tenax. J Evol Biochem Physiol (USSR) 12:495–500.

    Google Scholar 

  • Pritchard G (1966) On the morphology of the compound eyes of dragonflies (Odonata, Anisoptera) with special reference to their role in prey capture. Proc R Ent Soc London Ser A 41:1–8.

    Google Scholar 

  • Rilling S, Mittstaedt M, Roeder KD (1959) Prey recognition in the praying mantis. behavior 14:164–184.

    Article  Google Scholar 

  • Roeder KD (1937) The control of tonus and locomotor activity in the praying mantis (Mantis religiosa L.). J Exp Zool 76:353–373.

    Article  Google Scholar 

  • Roeder KD (1960) The predatory and display strikes of the praying mantis. Med Biol Illustr 10:172–178.

    CAS  Google Scholar 

  • Rossel S (1983) Binocular stereopsis in an insect. Nature (London) 302:821–822.

    Article  Google Scholar 

  • Rossel S (1986) Binocular spatial localization in the praying mantis. J Exp Biol 120:265–281.

    Google Scholar 

  • Schaller F (1953) Verhaltens-und sinnesphysiologische Beobachtungen an Squilla mantis L. Z Tierpsychol 10:1–12.

    Google Scholar 

  • Schiff H, Abbott BC Manning RB (1985) Possible monocular range-finding mechanisms in stomatopods from different environmental light conditions. Comp Biochem Physiol A 80:271–280.

    Article  Google Scholar 

  • Schiff H, D’Isep F, Candone P (1986) Superposition and scattering of visual fields in a compound, double eye. II. Stimulation sequences for different distances in a stomatopod from a bright habitat. Comp Biochem Physiol A 83:445–455.

    Article  Google Scholar 

  • Schwind R (1978) Visual System of Notonecta glauca: A neuron sensitive to movement in the binocular visual field. J Comp Physiol A 123:315–328.

    Article  Google Scholar 

  • Schwind R (1980) Geometrical optics of the Notonecta eye: Adaptations to optical environment and way of life. J Comp Physiol A 140:59–68.

    Article  Google Scholar 

  • Sherk TE (1978) Development of the compound eyes of dragonflies (Odonata). III. Adult compound eyes. J Exp Zool 203:61–80.

    Article  PubMed  CAS  Google Scholar 

  • Stockton WL, Cowen R (1976) Stereoscopic vision in one eye: paleophysiology of the schizochroal eye of trilobites. Palaebiology 2:304–315.

    Google Scholar 

  • Strausfeld NJ, Nässel DR (1981) Neuroarchitecture serving compound eyes of Crustacea and insects. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6B. Springer, Berlin Heidelberg New York, pp 1–132.

    Google Scholar 

  • Via S (1977) Visually mediated snapping in the bulldog ant: a perceptual ambiguity between size and distance. J Comp Physiol A 121:33–51.

    Article  Google Scholar 

  • Vogt P (1964) Über die optischen Schlüsselreize beim Beuteerwerb der Larven der Libelle Aeschna cyanea Müll. Zool Jahrb Physiol 71:171–180.

    Google Scholar 

  • Wallace GK (1959) Visual scanning in the desert locust Schistocerca gregaria Forskål. J Exp Biol 36:512–525.

    Google Scholar 

  • Wehner R (1981) Spatial vision in arthropods. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6C. Springer, Berlin Heidelberg New York, pp 287–616.

    Google Scholar 

  • Weinreich E (1968) Über den Klebefangapparat der Imagines von Stenus Latr. (Coleopt. Staphylinidae) mit einem Beitrag zur Kenntnis der Jugendstadien dieser Gattung. Z Morphol Tiere 62:162–210.

    Article  Google Scholar 

  • Zänkert A (1938, 1939) Vergleichend-morphologische und physiologisch-funktionelle Untersuchungen an Augen beutefangender Insekten. Sitz Ber Ges Naturforsch Berlin 1-3:82–169.

    Google Scholar 

  • Zeil J (1983) Sexual dimorphism in the visual system of flies: The free flight behavior of male Bibionidae (Diptera). J Comp Physiol A 150:395–412.

    Article  Google Scholar 

  • Zeil J, Nalbach G, Nalbach H-O (1986) Eyes, eye stalks and the visual world of semiterrestrial crabs. J Comp Physiol A 159:801–811.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schwind, R. (1989). Size and Distance Perception in Compound Eyes. In: Stavenga, D.G., Hardie, R.C. (eds) Facets of Vision. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74082-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74082-4_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74084-8

  • Online ISBN: 978-3-642-74082-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics