Skip to main content
Log in

Spatial acuity-sensitivity trade-off in the principal eyes of a jumping spider: possible adaptations to a ‘blended’ lifestyle

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Jumping spiders (Salticidae) are diurnal visual predators known for elaborate, vision-mediated behaviour achieved through the coordinated work of four pairs of camera-type eyes. One pair (‘principal’ eyes) is responsible for colour and high spatial acuity vision, while three pairs (‘secondary’ eyes) are mostly responsible for motion detection. Based on its unusual capacity to visually discriminate specific prey in very low, but also under bright light settings, we investigated the structure of the principal and one pair of secondary eyes (antero-lateral eyes) of Cyrba algerina to determine how these eyes achieve the sensitivity, while maintaining spatial acuity, needed to sustain behaviour in low light. Compared to salticids that live in bright light, the principal eyes of C. algerina have a short focal length, and wide contiguous twin rhabdomeres that support optical pooling, overall favouring sensitivity (0.39 μm2), but without fully compromising acuity (12.4 arc min). The antero-lateral eye retinae have large receptors surrounded by pigment granules, providing effective shielding from scattered light. These adaptations may be beneficial for a xeric salticid species with a ‘blended’ lifestyle: generally living and hunting under stones in the dark, but sometimes venturing above them, in dramatically different light conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bednarski JV, Taylor P, Jakob EM (2012) Optical cues used in predation by jumping spiders, Phidippus audax (Araneae, Salticidae). Anim Behav 84:1221–1227

    Google Scholar 

  • Blest AD (1983) Ultrastructure of secondary retinae of primitive and advanced jumping spiders (Araneae, Salticidae). Zoomorphology 10:125–141

    Google Scholar 

  • Blest AD (1984) Secondary retinae of a primitive jumping spider, Yaginumanis (Arachnida, Araneida, Salticidae). Zoomorphology 104:223–225

    Google Scholar 

  • Blest AD (1985a) Retinal mosaics of the principal eyes of jumping spiders (Salticidae) in some neotropical habitats: optical trade-offs between sizes and habitat illuminances. J Comp Physiol A 157:391–404

    Google Scholar 

  • Blest AD (1985b) The fine structure of spider photoreceptors in relation to function. In: Barth FG (ed) Neurobiology of arachnids. Springer-Verlag, Berlin, pp 79–102

    Google Scholar 

  • Blest AD (1987) Comparative aspects of the retinal mosaics of jumping spiders. In: Gupta AP (ed) Arthropod brain: its evolution, development, structure, and functions. John Wiley and Sons Inc, New York, pp 203–229

    Google Scholar 

  • Blest AD, Land MF (1977) The physiological optics of Dinopis subrufus L. Koch: a fish-lens in a spider. Proc Roy Soc Lond B 196:197–222

    CAS  Google Scholar 

  • Blest AD, Sigmund C (1984) Retinal mosaics of the principal eyes of two primitive jumping spiders, Yaginumanis and Lyssomanes: clues to the evolution of salticid vision. Proc Roy Soc Lond B 221:111–125

    Google Scholar 

  • Blest AD, Hardie RC, McIntyre P, Williams DS (1981) The spectral sensitivities of identified receptors and the function of retinal tiering in the principal eyes of a jumping spider. J Comp Physiol A 145:227–239

    Google Scholar 

  • Blest AD, McIntyre P, Carter M (1988) A re-examination of the principal retinae of Phidippus johnsoni and Plexippus validus (Araneae: Salticidae): implications for optimal modelling. J Comp Physiol A 162:47–56

    Google Scholar 

  • Blest AD, O’Carroll DC, Carter M (1990) Comparative ultrastructure of Layer I mosaics in principal eyes of jumping spiders: the evolution of regular arrays of light guides. Cell Tissue Res 26:445–460

    Google Scholar 

  • Bruno MS, Barnes SN, Goldsmith TH (1977) The visual pigment and visual cycle of the lobster, Homarus. J Comp Physiol A 120:123–142

    CAS  Google Scholar 

  • Cerveira AM (2007) Geographic variation in behaviour and dim light adaptation in Cyrba algerina (Araneae, Salticidae). Dissertation, University of Canterbury, New Zealand

  • Cerveira AM, Jackson RR (2011) Interpopulation variation in kairomone use by Cyrba algerina, an araneophagic jumping spider from Portugal. J Ethol 29:121–129

    Google Scholar 

  • Cerveira AM, Jackson RR (2013) Love is in the air and on the ground: olfactory and tactile cues elicit visual courtship behavior by Cyrba males (Araneae: Salticidae). J Arachnol 41:374–380

    Google Scholar 

  • Cerveira AM, Jackson RR, Guseinov EF (2003) Stalking decisions of web-building araneophagic jumping spiders from Australia, Azerbaijan, Israel, Kenya, Portugal, and Sri Lanka: the opportunistic smokescreen tactics Brettus, Cocalus, Cyrba, and Portia. N Z J Zool 30:21–30

    Google Scholar 

  • Cerveira AM, Jackson RR, Nelson XJ (2019) Dim-light vision in jumping spiders (Araneae, Salticidae): identification of prey and rivals. J Exp Biol 222:jeb198069

    PubMed  PubMed Central  Google Scholar 

  • Collins CE, Hendrickson A, Kaas JH (2005) Overview of the visual system of tarsius. Anat Rec 287A:1013–1025

    Google Scholar 

  • Doujak FE (1985) Can a shore crab see a star? J Exp Biol 116:385–393

    Google Scholar 

  • Eakin RM, Brandenburger JL (1971) Fine structure of the eyes of jumping spiders. J Ultrastruct Res 37:618–663

    CAS  PubMed  Google Scholar 

  • Fenk LM, Schmid A (2011) Flicker-induced eye movements and the behavioural temporal cut-off frequency in a nocturnal spider. J Exp Biol 214:3658–3663

    PubMed  Google Scholar 

  • Fenk LM, Heidlmayr K, Lindner P, Schmid, (2010) Pupil size in spider eyes is linked to post-ecdysal lens growth. PLoS ONE 5:e15838

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fritsches KA, Brill RW, Warrant EJ (2005) Warm eyes provide superior vision in swordfishes. Curr Biol 15:55–58

    CAS  PubMed  Google Scholar 

  • Goté JT, Butler PM, Zurek DB, Buschbeck EK, Morehouse NI (2019) Growing tiny eyes: how juvenile jumping spiders retain high visual performance in the face of size limitations and developmental constraints. Vis Res 160:24–36

    PubMed  Google Scholar 

  • Greiner B, Ribi WA, Warrant EJ (2004) Retinal and optical adaptations for nocturnal vision in the halictid bee Megalopta genalis. Cell Tissue Res 316:377–390

    PubMed  Google Scholar 

  • Grusch M, Barth FG, Eguchi E (1997) Fine structural correlates of sensitivity in the eyes of the ctenid spider, Cupiennius salei Keys. Tissue Cell 29:421–430

    CAS  PubMed  Google Scholar 

  • Guseinov EF, Cerveira AM, Jackson RR (2004) The predatory strategy, natural diet, and life cycle of Cyrba algerina, an araneophagic jumping spider (Salticidae: Spartaeinae) from Azerbaijan. N Z J Zool 31:291–303

    Google Scholar 

  • Harland DP, Jackson RR (2004) Portia perceptions: the umwelt of an araneophagic jumping spider. In: Prete FR (ed) Complex worlds from simpler nervous systems. MIT Press, Cambridge, Massachusetts, pp 5–40

  • Harland DP, Jackson RR, Macnab AM (1999) Distances at which jumping spiders (Araneae: Salticidae) distinguish between prey and conspecific rivals. J Zool 247:357–364

    Google Scholar 

  • Harland DP, Li D, Jackson RR (2012) How jumping spiders see the world. In: Lazareva OF, Shimizu T, Wasserman EA (eds) How animals see the world: comparative behavior, biology, and evolution of vision. Oxford University Press, New York, pp 133–164

    Google Scholar 

  • Hoffmaster DK (1982) Predator avoidance behaviors of five species of Panamanian orb-weaving spiders (Araneae; Araneidae, Uloboridae). J Arachnol 10:69–73

    Google Scholar 

  • Homann H (1928) Beiträge zur physiologie der spinnenaugen. I. Untersuchungsmethoden. II. Das sehvermögen der salticiden. Z Vergl Physiol 7:201–268

    Google Scholar 

  • Jackson RR (1990) Predatory versatility and intraspecific interactions of Cyrba algerina and Cyrba ocellata, web-invading spartaeine jumping spiders (Araneae: Salticidae). N Z J Zool 17:157–168

    Google Scholar 

  • Jackson RR, Blest AD (1982) The distances at which a primitive jumping spider, Portia fimbriata, makes visual discriminations. J Exp Biol 97:441–445

    Google Scholar 

  • Jackson RR, Hallas SEA (1986) Predatory versatility and intraspecific interactions of spartaeine jumping spiders (Araneae, Salticidae): Brettus adonis, B. cingulatus, Cyrba algerina and Phaecius sp. indet. N Z J Zool 13:491–520

    Google Scholar 

  • Jackson RR, Li D (1998) Prey preferences and visual discrimination ability of Cyrba algerina, an araneophagic jumping spider (Araneae: Salticidae) with primitive retinae. Isr J Zool 44:227–242

    Google Scholar 

  • Jackson RR, Nelson XJ, Sune GO (2005) A spider that feeds indirectly on vertebrate blood by choosing female mosquitoes as prey. Proc Natl Acad Sci USA 102:15155–15160

    CAS  PubMed  Google Scholar 

  • Jakob EM, Long M, Harland DP, Jackson RR, Carey A, Searles ME, Porter AH, Canavesi C, Rolland JP (2018) Lateral eyes direct principal eyes as jumping spiders track objects. Curr Biol 28:R1075-1095

    Google Scholar 

  • Land MF (1969a) Structure of the principal eyes of jumping spiders (Salticidae: Dendrynphantinae) in relation to visual optics. J Exp Biol 51:443–470

    CAS  PubMed  Google Scholar 

  • Land MF (1969b) Movements of the retinae of jumping spiders (Salticidae: Dendryphantinae) in response to visual stimuli. J Exp Biol 51:471–493

    CAS  PubMed  Google Scholar 

  • Land MF (1971) Orientation by jumping spiders in the absence of visual feedback. J Exp Biol 54:119–139

    CAS  PubMed  Google Scholar 

  • Land MF (1974) A comparison of the visual behaviour of a predatory arthropod with that of a mammal. In: Wiersma CAG (ed) Invertebrate neurons and behaviour. MIT Press, Cambridge, pp 411–418

    Google Scholar 

  • Land MF (1981) Optics and vision in invertebrates. In: Autrum H (ed) Comparative physiology and evolution of vision in invertebrates. Springer-Verlag, Berlin, pp 471–592

    Google Scholar 

  • Land MF (1985) The morphology and optics of spider eyes. In: Barth FG (ed) Neurobiology of Arachnids. Springer-Verlag, Berlin, pp 53–77

    Google Scholar 

  • Land MF (1995) Fast-focus telephoto eye. Nature 373:658–659

    CAS  PubMed  Google Scholar 

  • Land MF, Nilsson D-E (2012) Animal eyes, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Laughlin S (1990) Invertebrate vision at low luminances. In: Hess RF, Sharpe LT, Nordby K (eds) Night vision basic clinic and applied aspects. Cambridge University Press, New York, pp 223–250

    Google Scholar 

  • Laughlin S, Blest AD, Stowe S (1980) The sensitivity of receptors in the posterior median eye of the nocturnal spider, Dinopis. J Comp Physiol 141:53–65

    Google Scholar 

  • Maddison W (2015) A phylogenetic classification of jumping spiders (Araneae: Salticidae). J Arachnol 43:231–292

    Google Scholar 

  • McGinley RH, Mendez V, Taylor PW (2015) Natural history and display behaviour of Servaea incana, a common and widespread Australian jumping spider (Araneae: Salticidae). Aust J Zool 63:300–319. https://doi.org/10.1071/ZO15032

    Article  Google Scholar 

  • Meyer-Rochow VB, Liddle AR (1988) Structure and function of the eyes of two species of opilionid from New Zealand glow-worm caves (Megalopsalis tumida: Palpatores, and Hendea myersi cavernicola: Laniatores). Proc Roy Soc Lond B 233:293–319

    Google Scholar 

  • Nagata T, Koyanagi M, Tsukamoto H, Saeki S, Isono K, Shichida Y, Tokunaga F, Kinoshita M, Arikawa K, Terakita A (2012) Depth perception from image defocus in a jumping spider. Science 335:469–471

    CAS  PubMed  Google Scholar 

  • Nagata T, Arikawa K, Kinoshita M (2019) Photoreceptor projection from a four-tiered retina to four distinct regions of the first optic ganglion in a jumping spider. J Comp Neurol 52:1348–1361

    Google Scholar 

  • Nørgaard T, Nilsson D-E, Henschel JR, Garm A, Wehner R (2008) Vision in the nocturnal wandering spider Leucorchestris arenicola (Araneae: Sparassidae). J Exp Biol 211:816–823

    PubMed  Google Scholar 

  • O'Carroll D (1989) An optical assessment of visual performance in the eyes of hunting spiders, Araneae Labidognatha. Dissertation, Flinders University, Australia.

  • Orlowski J, Harmening W, Wagner H (2012) Night vision in barn owls: Visual acuity and contrast sensitivity under dark adaptation. J Vision 12:1–8

    Google Scholar 

  • Pirhofer-Walzl K, Warrant E, Barth FG (2007) Adaptations for vision in dim light: impulse responses and bumps in nocturnal spider photoreceptor cells (Cupiennius salei Keys). J Comp Physiol A 193:1081–1087

    Google Scholar 

  • Snyder AW (1977) Acuity of compound eyes: physical limitations and design. J Comp Physiol A 116:161–182

    Google Scholar 

  • Snyder AW, Miller WH (1978) Telephoto lens system of falconiform eyes. Nature 275:127–129

    CAS  PubMed  Google Scholar 

  • Stöckl AL, O’Carroll D, Warrant EJ (2020) Hawkmoth lamina monopolar cells act as dynamic spatial filters to optimize vision at different light levels. Sci Adv 6:eaaz8645

    PubMed  PubMed Central  Google Scholar 

  • Su KF, Meier R, Jackson RR, Harland DP, Li D (2007) Convergent evolution of eye ultrastructure and divergent evolution of vision-mediated predatory behaviour in jumping spiders. J Evol Biol 20:1478–1489

    CAS  PubMed  Google Scholar 

  • Tork P (2019) Pathways of ocular entrainment in Marpissa marina (Araneae, Salticidae). N Z J Zool 46:321–333

    Google Scholar 

  • Wanless FR (1984) A review of the spider subfamily Spartaeinae nom.n. (Araneae: Salticidae) with descriptions of six new genera. Bull Brit Mus Nat Hist 46:135–205

    Google Scholar 

  • Warrant EJ (1999) Seeing better at night: life style, eye design and the optimum strategy of spatial and temporal summation. Vis Res 39:1611–1630

    CAS  PubMed  Google Scholar 

  • Warrant EJ (2008) Seeing in the dark: vision and visual behaviour in nocturnal bees and wasps. J Exp Biol 211:1737–1746

    PubMed  Google Scholar 

  • Warrant EJ, McIntyre PD (1991) Strategies for retinal design in arthropod eyes of low F-number. J Comp Physiol A 168:499–512

    Google Scholar 

  • Warrant EJ, McIntyre PD (1993) Arthropod eye design and the physical limits to spatial resolving power. Prog Neurobiol 40:413–461

    CAS  PubMed  Google Scholar 

  • Warrant EJ, Nilsson DE (1998) Absorption of white light in photoreceptors. Vis Res 38:195–207

    CAS  PubMed  Google Scholar 

  • Williams DS, McIntyre PD (1980) The principal eyes of a jumping spider have a telephoto component. Nature 288:578–580

    Google Scholar 

  • Zabka M, Kovac D (1996) Paracyrba wanlenssi: a new genus and species of Spartaeinae from peninsular Malaysia, with notes on its biology. Senck Biol 76:153–161

    Google Scholar 

  • Zurek DB (2012) The function of the anterior lateral eyes in the modular visual system of jumping spiders (Araneae, Salticidae). Dissertation, Macquarie University, Australia.

  • Zurek DB, Nelson XJ (2012) Hyperacute motion detection by the lateral eyes of jumping spiders. Vision Res 66:26–30

    PubMed  Google Scholar 

  • Zurek DB, Taylor AJ, Evans CS, Nelson XJ (2010) The role of the anterior lateral eyes in the vision-based behaviour of jumping spiders. J Exp Biol 213:2372–2378

    PubMed  Google Scholar 

  • Zurek DB, Cronin TW, Taylor LA, Byrne K, Sullivan MLG, Morehouse NI (2015) Spectral filtering enables trichromatic vision in colourful jumping spiders. Curr Biol 25:R403-404

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Aynsley McNab for help in spider maintenance, Duane Harland for help with calculations and Jan McKenzie for her mentoring with the microscopy work. We would also like to acknowledge the two anonymous reviewers for their extremely helpful comments and contribution to the improvement of this paper. All applicable international, national, and institutional guidelines for the care and use of animals were followed.

Funding

Our research was supported by grants to RRJ from the Royal Society of New Zealand Marsden Fund (M1096, M1079), the National Geographic Society (8676-09, WW-146R-17), the US National Institutes of Health (R01-AI077722) and FCT/MCTES (UIDP/50017/2020+UIDB/50017/2020) through national funds. AMC was also funded by national funds (OE), through FCT in the scope of the framework contract foreseen in the numbers 4, 5 and 6 of the article 23, of the Decree-Law 57/2016, of August 29, changed by Law 57/2017, of July 19.

Author information

Authors and Affiliations

Authors

Contributions

RRJ and AMC conceptualised the study and carried out experiments. All authors contributed to the writing of the paper.

Corresponding author

Correspondence to Ana M. Cerveira.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cerveira, A.M., Nelson, X.J. & Jackson, R.R. Spatial acuity-sensitivity trade-off in the principal eyes of a jumping spider: possible adaptations to a ‘blended’ lifestyle. J Comp Physiol A 207, 437–448 (2021). https://doi.org/10.1007/s00359-021-01486-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-021-01486-2

Keywords

Navigation