Skip to main content
Log in

Advancements in stone classification: unveiling the beauty of urolithiasis

  • Topic Paper
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Purpose

Urolithiasis has become increasingly prevalent, leading to higher disability-adjusted life years and deaths. Various stone classification systems have been developed to enhance the understanding of lithogenesis, aid urologists in treatment decisions, and predict recurrence risk. The aim of this manuscript is to provide an overview of different stone classification criteria.

Methods

Two authors conducted a review of literature on studies relating to the classification of urolithiasis. A narrative synthesis for analysis of the studies was used.

Results

Stones can be categorized based on anatomical position, size, medical imaging features, risk of recurrence, etiology, composition, and morphoconstitutional analysis. The first three mentioned offer a straightforward approach to stone classification, directly influencing treatment recommendations. With the routine use of CT imaging before treatment, precise details like anatomical location, stone dimensions, and Hounsfield Units can be easily determined, aiding treatment planning. In contrast, classifying stones based on risk of recurrence and etiology is more complex due to dependencies on multiple variables, including stone composition and morphology. A classification system based on morphoconstitutional analysis, which combines morphological stone appearance and chemical composition, has demonstrated its value. It allows for the rapid identification of crystalline phase principles, the detection of crystalline conversion processes, the determination of etiopathogenesis, the recognition of lithogenic processes, the assessment of crystal formation speed, related recurrence rates, and guidance for selecting appropriate treatment modalities.

Conclusions

Recognizing that no single classification system can comprehensively cover all aspects, the integration of all classification approaches is essential for tailoring urolithiasis patient-specific management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sorokin I, Mamoulakis C, Miyazawa K, Rodgers A, Talati J, Lotan Y (2017) Epidemiology of stone disease across the world. World J Urol 35:1301–1320

    Article  PubMed  Google Scholar 

  2. Lang J, Narendrula A, El-Zawahry A, Sindhwani P, Ekwenna O (2022) Global Trends in Incidence and Burden of Urolithiasis from 1990 to 2019: An Analysis of Global Burden of Disease Study Data. Eur Urol Open Sci 35:37–46

    Article  PubMed  PubMed Central  Google Scholar 

  3. Juliebo-Jones P, Ulvik O, Ms AE, Gjengsto P, Beisland C, Somani BK (2023) Mortality due to urolithiasis in England and Wales: updated findings from a national database over a 23-year period. Cent Eur J Urol 76:141–143

    Google Scholar 

  4. Assimos D, Krambeck A, Miller NL, Monga M, Murad MH, Nelson CP et al (2016) Surgical Management of Stones: American Urological Association/Endourological Society Guideline. PART II J Urol 196:1161–1169

    Article  PubMed  Google Scholar 

  5. Geraghty RM, Davis NF, Tzelves L, Lombardo R, Yuan C, Thomas K et al (2023) Best Practice in Interventional Management of Urolithiasis: An Update from the European Association of Urology Guidelines Panel for Urolithiasis 2022. Eur Urol Focus 9:199–208

    Article  PubMed  Google Scholar 

  6. Keller EX, De Coninck V, Traxer O, Shvero A, Kleinmann N, Hubosky SG, et al. Stones. Advanced Ureteroscopy: A Practitioner's Guide to Treating Difficult Problems: Springer; 2021. p. 105–54

  7. Keller EX, De Coninck V, Audouin M, Doizi S, Daudon M, Traxer O (2019) Stone composition independently predicts stone size in 18,029 spontaneously passed stones. World J Urol 37:2493–2499

    Article  PubMed  Google Scholar 

  8. De Coninck V, Antonelli J, Chew B, Patterson JM, Skolarikos A, Bultitude M (2019) Medical Expulsive Therapy for Urinary Stones: Future Trends and Knowledge Gaps. Eur Urol 76:658–666

    Article  PubMed  Google Scholar 

  9. De Coninck V, Traxer O (2018) The Time Has Come to Report Stone Burden in Terms of Volume Instead of Largest Diameter. J Endourol 32:265–266

    Article  PubMed  Google Scholar 

  10. Keller EX, De Coninck V, Doizi S, Daudon M, Traxer O (2021) What is the exact definition of stone dust? An in vitro evaluation. World J Urol 39:187–194

    Article  CAS  PubMed  Google Scholar 

  11. De Coninck V, Ventimiglia E, Traxer O (2022) How Should We Assess Stone Ablation Efficacy When Comparing Different Lasers? Eur Urol Focus 8:1450–1451

    Article  PubMed  Google Scholar 

  12. De Coninck V, Somani B, Sener ET, Emiliani E, Corrales M, Juliebo-Jones P et al (2022) Ureteral access sheaths and its use in the future: a comprehensive update based on a literature review. J Clin Med 11(17):5128

    Article  PubMed  PubMed Central  Google Scholar 

  13. Keller EX, De Coninck V, Doizi S, Traxer O (2020) The role of ureteroscopy for treatment of staghorn calculi: A systematic review. Asian J Urol 7:110–115

    Article  PubMed  Google Scholar 

  14. Elton DC, Turkbey EB, Pickhardt PJ, Summers RM (2022) A deep learning system for automated kidney stone detection and volumetric segmentation on noncontrast CT scans. Med Phys 49:2545–2554

    Article  PubMed  Google Scholar 

  15. Rodriguez-Plata IT, Medina-Escobedo M, Basulto-Martinez M, Avila-Nava A, Gutierrez-Solis AL, Mendez-Dominguez N et al (2021) Implementation of a Technique Based on Hounsfield Units and Hounsfield Density to Determine Kidney Stone Composition. Tomography 7:606–613

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tailly T, Larish Y, Nadeau B, Violette P, Glickman L, Olvera-Posada D et al (2016) Combining Mean and Standard Deviation of Hounsfield Unit Measurements from Preoperative CT Allows More Accurate Prediction of Urinary Stone Composition Than Mean Hounsfield Units Alone. J Endourol 30:453–459

    Article  PubMed  Google Scholar 

  17. Kaviani P, Primak A, Bizzo B, Ebrahimian S, Saini S, Dreyer KJ et al (2023) Performance of threshold-based stone segmentation and radiomics for determining the composition of kidney stones from single-energy CT. Jpn J Radiol 41:194–200

    Article  CAS  PubMed  Google Scholar 

  18. Euler A, Wullschleger S, Sartoretti T, Muller D, Keller EX, Lavrek D et al (2023) Dual-energy CT kidney stone characterization-can diagnostic accuracy be achieved at low radiation dose? Eur Radiol 33(9):6238–6244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Grosjean R, Sauer B, Guerra RM, Daudon M, Blum A, Felblinger J et al (2008) Characterization of human renal stones with MDCT: advantage of dual energy and limitations due to respiratory motion. AJR Am J Roentgenol 190:720–728

    Article  PubMed  Google Scholar 

  20. Bellin MF, Renard-Penna R, Conort P, Bissery A, Meric JB, Daudon M et al (2004) Helical CT evaluation of the chemical composition of urinary tract calculi with a discriminant analysis of CT-attenuation values and density. Eur Radiol 14:2134–2140

    Article  PubMed  Google Scholar 

  21. Mostafavi MR, Ernst RD, Saltzman B (1998) Accurate determination of chemical composition of urinary calculi by spiral computerized tomography. J Urol 159:673–675

    Article  CAS  PubMed  Google Scholar 

  22. Tsaturyan A, Bokova E, Bosshard P, Bonny O, Fuster DG, Roth B (2020) Oral chemolysis is an effective, non-invasive therapy for urinary stones suspected of uric acid content. Urolithiasis 48:501–507

    Article  PubMed  PubMed Central  Google Scholar 

  23. Garg M, Johnson H, Lee SM, Rai BP, Somani B, Philip J (2023) Role of Hounsfield Unit in Predicting Outcomes of Shock Wave Lithotripsy for Renal Calculi: Outcomes of a Systematic Review. Curr Urol Rep 24:173–185

    Article  PubMed  PubMed Central  Google Scholar 

  24. Joseph P, Mandal AK, Singh SK, Mandal P, Sankhwar SN, Sharma SK (2002) Computerized tomography attenuation value of renal calculus: can it predict successful fragmentation of the calculus by extracorporeal shock wave lithotripsy? A preliminary study J Urol 167:1968–1971

    PubMed  Google Scholar 

  25. Perks AE, Gotto G, Teichman JM (2007) Shock wave lithotripsy correlates with stone density on preoperative computerized tomography. J Urol 178:912–915

    Article  PubMed  Google Scholar 

  26. Lim EJ, Castellani D, So WZ, Fong KY, Li JQ, Tiong HY, et al. (2022) Radiomics in Urolithiasis: Systematic Review of Current Applications, Limitations, and Future Directions. J Clin Med 11(17):5151

    Article  PubMed  PubMed Central  Google Scholar 

  27. Skolarikos A, Neisius A, Petřík A, Somani B, Thomas K, Gambaro G, et al. (2022) Urolithiasis. EAU Guidelines Edn presented at the EAU Annual Congress Amsterdam

  28. Pearle MS, Goldfarb DS, Assimos DG, Curhan G, Denu-Ciocca CJ, Matlaga BR et al (2014) Medical management of kidney stones: AUA guideline. J Urol 192:316–324

    Article  PubMed  Google Scholar 

  29. Rule AD, Lieske JC, Li X, Melton LJ 3rd, Krambeck AE, Bergstralh EJ (2014) The ROKS nomogram for predicting a second symptomatic stone episode. J Am Soc Nephrol 25:2878–2886

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kavoussi NL, Da Silva A, Floyd C, McCoy A, Koyama T, Hsi RS (2023) Feasibility of stone recurrence risk stratification using the recurrence of kidney stone (ROKS) nomogram. Urolithiasis 51:73

    Article  PubMed  Google Scholar 

  31. Iremashvili V, Li S, Penniston KL, Best SL, Hedican SP, Nakada SY (2019) External Validation of the Recurrence of Kidney Stone Nomogram in a Surgical Cohort. J Endourol 33:475–479

    Article  PubMed  Google Scholar 

  32. Forbes CM, McCoy AB, Hsi RS (2021) Clinician Versus Nomogram Predicted Estimates of Kidney Stone Recurrence Risk. J Endourol 35:847–852

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rodger F, Roditi G, Aboumarzouk OM (2018) Diagnostic Accuracy of Low and Ultra-Low Dose CT for Identification of Urinary Tract Stones: A Systematic Review. Urol Int 100:375–385

    Article  PubMed  Google Scholar 

  34. Brisbane W, Bailey MR, Sorensen MD (2016) An overview of kidney stone imaging techniques. Nat Rev Urol 13:654–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Snicorius M, Drevinskaite M, Miglinas M, Cekauskas A, Stadulyte M, Bandzeviciute R et al (2023) A Novel Infrared Spectroscopy Method for Analysis of Stone Dust for Establishing Final Composition of Urolithiasis. Eur Urol Open Sci 47:36–42

    Article  PubMed  Google Scholar 

  36. Castiglione V, Sacre PY, Cavalier E, Hubert P, Gadisseur R, Ziemons E (2018) Raman chemical imaging, a new tool in kidney stone structure analysis: Case-study and comparison to Fourier Transform Infrared spectroscopy. PLoS ONE 13:e0201460

    Article  PubMed  PubMed Central  Google Scholar 

  37. Khan AH, Imran S, Talati J, Jafri L (2018) Fourier transform infrared spectroscopy for analysis of kidney stones. Investig Clin Urol 59:32–37

    Article  PubMed  PubMed Central  Google Scholar 

  38. Racek M, Racek J, Hupakova I (2019) Scanning electron microscopy in analysis of urinary stones. Scand J Clin Lab Invest 79:208–217

    Article  CAS  PubMed  Google Scholar 

  39. Daudon M, Jungers P, Lacour B (2004) Clinical value of crystalluria study. Ann Biol Clin (Paris) 62:379–393

    CAS  PubMed  Google Scholar 

  40. Daudon M (1991) Jungers P [Analytical methods of calculi and urinary crystals]. Rev Prat 41:2017–2022

    CAS  PubMed  Google Scholar 

  41. Zhu W, Sun Z, Ye L, Zhang X, Xing Y, Zhu Q et al (2022) Preliminary assessment of a portable Raman spectroscopy system for post-operative urinary stone analysis. World J Urol 40:229–235

    Article  CAS  PubMed  Google Scholar 

  42. Daudon M, Bader CA, Jungers P (1993) Urinary calculi: review of classification methods and correlations with etiology. Scann Microsc 7:1081–1104

    CAS  Google Scholar 

  43. De Coninck V, Keller EX, Daudon M, Traxer O (2019) RE: Geobiology reveals how human kidney stones dissolve in vivo (by: Sivaguru et al 2018). World J Urol 37:2543

    Article  PubMed  Google Scholar 

  44. Keller EX, de Coninck V, Audouin M, Doizi S, Bazin D, Daudon M et al (2019) Fragments and dust after Holmium laser lithotripsy with or without “Moses technology”: How are they different? J Biophotonics 12:e201800227

    Article  PubMed  Google Scholar 

  45. Keller EX, De Coninck V, Doizi S, Daudon M, Traxer O (2021) Thulium fiber laser: ready to dust all urinary stone composition types? World J Urol 39:1693–1698

    Article  CAS  PubMed  Google Scholar 

  46. Krambeck AE, Khan NF, Jackson ME, Lingeman JE, McAteer JA, Williams JC Jr (2010) Inaccurate reporting of mineral composition by commercial stone analysis laboratories: implications for infection and metabolic stones. J Urol 184:1543–1549

    Article  PubMed  PubMed Central  Google Scholar 

  47. Siener R, Buchholz N, Daudon M, Hess B, Knoll T, Osther PJ et al (2016) Quality Assessment of Urinary Stone Analysis: Results of a Multicenter Study of Laboratories in Europe. PLoS ONE 11:e0156606

    Article  PubMed  PubMed Central  Google Scholar 

  48. Daudon M, Donsimoni R, Hennequin C, Fellahi S, Le Moel G, Paris M et al (1995) Sex- and age-related composition of 10 617 calculi analyzed by infrared spectroscopy. Urol Res 23:319–326

    Article  CAS  PubMed  Google Scholar 

  49. Ord WM, Shattock SG (1895) On the microscopic structure of urinary calculi of oxalate of lime: Adlar and Son, Bartholomew Close

  50. Prien EL, Frondel C (1947) Studies in urolithiasis: I. The composition of urinary calculi. J Urol 57:949–991

    Article  CAS  PubMed  Google Scholar 

  51. Murphy BT, Pyrah L (1962) The composition, structure, and mechanisms of the formation of urinary calculi. Br J Urol 34:129–159

    Article  CAS  PubMed  Google Scholar 

  52. Schubert G, Brien G (1981) Crystallographic investigations of urinary calcium oxalate calculi. Int Urol Nephrol 13:249–260

    Article  CAS  PubMed  Google Scholar 

  53. Otnes B (1983) Correlation between causes and composition of urinary stones. Scand J Urol Nephrol 17:93–98

    Article  CAS  PubMed  Google Scholar 

  54. Pak CY (1991) Etiology and treatment of urolithiasis. Am J Kidney Dis 18:624–637

    Article  CAS  PubMed  Google Scholar 

  55. Smith L (1987) Pathogenesis of renal stones. Miner Electrolyte Metab 13:214–219

    CAS  PubMed  Google Scholar 

  56. Wilson DM (1989) Clinical and laboratory approaches for evaluation of nephrolithiasis. J Urol 141:770–774

    Article  CAS  PubMed  Google Scholar 

  57. Daudon M, Jungers P (2004) Clinical value of crystalluria and quantitative morphoconstitutional analysis of urinary calculi. Nephron Physiol 98:p31–p36

    Article  CAS  PubMed  Google Scholar 

  58. De Coninck V, Keller EX, Traxer O (2019) Metabolic evaluation: who, when and how often. Curr Opin Urol 29:52–64

    Article  PubMed  Google Scholar 

  59. Asplin JR, Lingeman J, Kahnoski R, Mardis H, Parks JH, Coe FL (1998) Metabolic urinary correlates of calcium oxalate dihydrate in renal stones. J Urol 159:664–668

    Article  CAS  PubMed  Google Scholar 

  60. Daudon M (1984) Reveillaud RJ [Whewellite and weddellite: toward a different etiopathogenesis. The significance of morphological typing of calculi]. Nephrologie 5:195–201

    CAS  PubMed  Google Scholar 

  61. von Unruh GE, Voss S, Sauerbruch T, Hesse A (2004) Dependence of oxalate absorption on the daily calcium intake. J Am Soc Nephrol 15:1567–1573

    Article  Google Scholar 

  62. Frochot V, Daudon M (2016) Clinical value of crystalluria and quantitative morphoconstitutional analysis of urinary calculi. Int J Surg 36:624–632

    Article  PubMed  Google Scholar 

  63. Cloutier J, Villa L, Traxer O, Daudon M (2015) Kidney stone analysis: “Give me your stone, I will tell you who you are!” World J Urol 33:157–169

    Article  PubMed  Google Scholar 

  64. Dessombz A, Letavernier E, Haymann JP, Bazin D, Daudon M (2015) Calcium phosphate stone morphology can reliably predict distal renal tubular acidosis. J Urol 193:1564–1569

    Article  CAS  PubMed  Google Scholar 

  65. Randall A (1936) An Hypothesis for the Origin of Renal Calculus. N Engl J Med 214:234–242

    Article  Google Scholar 

  66. Daudon M, Bazin D, Letavernier E (2015) Randall’s plaque as the origin of calcium oxalate kidney stones. Urolithiasis 43(Suppl 1):5–11

    Article  CAS  PubMed  Google Scholar 

  67. Almeras C, Daudon M, Estrade V, Gautier JR, Traxer O, Meria P (2021) Classification of the renal papillary abnormalities by flexible ureteroscopy: evaluation of the 2016 version and update. World J Urol 39:177–185

    Article  PubMed  Google Scholar 

  68. Evan AP, Coe FL, Lingeman J, Bledsoe S, Worcester EM (2018) Randall’s plaque in stone formers originates in ascending thin limbs. Am J Physiol Renal Physiol 315:F1236–F1242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bouderlique E, Tang E, Perez J, Coudert A, Bazin D, Verpont MC et al (2019) Vitamin D and Calcium Supplementation Accelerates Randall’s Plaque Formation in a Murine Model. Am J Pathol 189:2171–2180

    Article  CAS  PubMed  Google Scholar 

  70. Borofsky MS, Williams JC Jr, Dauw CA, Cohen A, Evan AC, Coe FL et al (2019) Association Between Randall’s Plaque Stone Anchors and Renal Papillary Pits. J Endourol 33:337–342

    Article  PubMed  PubMed Central  Google Scholar 

  71. Ching CB, Dickinson K, Karafilidis J, Marchesani N, Mucha L, Antunes N et al (2023) The real world experience of pediatric primary hyperoxaluria patients in the PEDSnet clinical research network. Eur J Pediatr 182(9):4027–4036

    Article  PubMed  Google Scholar 

  72. Daudon M, Jungers P, Bazin D (2008) Peculiar morphology of stones in primary hyperoxaluria. N Engl J Med 359:100–102

    Article  CAS  PubMed  Google Scholar 

  73. Daudon M, Estepa L, Lacour B, Jungers P (1998) Unusual morphology of calcium oxalate calculi in primary hyperoxaluria. J Nephrol 11(Suppl 1):51–55

    PubMed  Google Scholar 

  74. Daudon M, Jungers P, Bazin D, Williams JC Jr (2018) Recurrence rates of urinary calculi according to stone composition and morphology. Urolithiasis 46:459–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dretler SP (1988) Stone fragility–a new therapeutic distinction. J Urol 139:1124–1127

    Article  CAS  PubMed  Google Scholar 

  76. Sakamoto W, Kishimoto T, Takegaki Y, Sugimoto T, Wada S, Yamamoto K et al (1991) Stone fragility–measurement of stone mineral content by dual photon absorptiometry. Eur Urol 20:150–153

    Article  CAS  PubMed  Google Scholar 

  77. Mandhani A, Raghavendran M, Srivastava A, Kapoor R, Singh U, Kumar A et al (2003) Prediction of fragility of urinary calculi by dual X-ray absorptiometry. J Urol 170:1097–1100

    Article  PubMed  Google Scholar 

  78. Williams JC Jr, Saw KC, Paterson RF, Hatt EK, McAteer JA, Lingeman JE (2003) Variability of renal stone fragility in shock wave lithotripsy. Urology 61:1092–1096

    Article  PubMed  Google Scholar 

  79. Daudon M, Bazin D, Andre G, Jungers P, Cousson A, Chevallier P et al (2009) Examination of whewellite kidney stones by scanning electron microscopy and powder neutron diffraction techniques. J Appl Crystallogr 42:109–115

    Article  CAS  Google Scholar 

  80. Bhatta KM, Prien EL Jr, Dretler SP (1989) Cystine calculi–rough and smooth: a new clinical distinction. J Urol 142:937–940

    Article  CAS  PubMed  Google Scholar 

  81. Pittomvils G, Vandeursen H, Wevers M, Lafaut JP, De Ridder D, De Meester P et al (1994) The influence of internal stone structure upon the fracture behaviour of urinary calculi. Ultrasound Med Biol 20:803–810

    Article  CAS  PubMed  Google Scholar 

  82. Zreik R, Pilosov Solomon I, Saliba W, Tor R, Cohen S, Friefeld Y et al (2023) The relationship between patients’ kidney stone type and demographics in Israel: analysis of 10 K patients. World J Urol 41:1641–1646

    Article  CAS  PubMed  Google Scholar 

  83. Daudon M (2005) Epidemiology of nephrolithiasis in France. Ann Urol (Paris) 39:209–231

    Article  CAS  PubMed  Google Scholar 

  84. Halinski A, Bhatti KH, Boeri L, Cloutier J, Davidoff K, Elqady A et al (2021) Stone composition of renal stone formers from different global regions. Arch Ital Urol Androl 93:307–312

    Article  CAS  PubMed  Google Scholar 

  85. Sierra A, Corrales M, Kolvatzis M, Daudon M, Traxer O (2022) Thulium Fiber Laser’s Dust for Stone Composition Analysis: Is It Enough? A Pilot Study J Endourol 36:1468–1474

    Article  PubMed  Google Scholar 

  86. Estrade V, Denis de Senneville B, Meria P, Almeras C, Bladou F, Bernhard JC et al (2021) Toward improved endoscopic examination of urinary stones: a concordance study between endoscopic digital pictures vs microscopy. BJU Int 128:319–330

    Article  CAS  PubMed  Google Scholar 

  87. Henderickx M, Stoots SJM, De Bruin DM, Wijkstra H, Freund JE, Wiseman OJ et al (2022) How Reliable Is Endoscopic Stone Recognition? A Comparison Between Visual Stone Identification and Formal Stone Analysis. J Endourol 36:1362–1370

    Article  PubMed  Google Scholar 

  88. Estrade V, Daudon M, Richard E, Bernhard JC, Bladou F, Robert G et al (2022) Towards automatic recognition of pure and mixed stones using intra-operative endoscopic digital images. BJU Int 129:234–242

    Article  PubMed  Google Scholar 

  89. Estrade V, Daudon M, Richard E, Bernhard JC, Bladou F, Robert G et al (2022) Deep morphological recognition of kidney stones using intra-operative endoscopic digital videos. Phys Med Biol 67 (16)

  90. El Beze J, Mazeaud C, Daul C, Ochoa-Ruiz G, Daudon M, Eschwege P et al (2022) Evaluation and understanding of automated urinary stone recognition methods. BJU Int 130:786–798

    Article  PubMed  PubMed Central  Google Scholar 

  91. Black KM, Law H, Aldoukhi A, Deng J, Ghani KR (2020) Deep learning computer vision algorithm for detecting kidney stone composition. BJU Int 125:920–924

    Article  CAS  PubMed  Google Scholar 

  92. Kwok JL, De Coninck V, Ventimiglia E, Panthier F, Corrales M, Sierra A et al (2023) Laser ablation efficiency, laser ablation speed, and laser energy consumption during lithotripsy: what are they and how are they defined? A systematic review and proposal for a standardized terminology. European Urology Focus S2405–4569(23):00222–00225

    Google Scholar 

Download references

Acknowledgements

Our special thanks go to Michel Daudon (Laboratoire des Lithiases, Service des Explorations Fonctionnelles Multidisciplinaires, AP-HP, Hôpital Tenon, Paris, France) for proofreading this article.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

VDC: protocol/project development, data collection or management, data analysis, manuscript writing/editing. AS: protocol/project development, manuscript writing/editing. PJ-J: manuscript writing/editing. MJ: manuscript writing/editing. OT: research concept, protocol/project development. EXK: research concept, protocol/project development, data collection or management, data analysis, manuscript writing/editing.

Corresponding author

Correspondence to Vincent De Coninck.

Ethics declarations

Conflict of interest

Vincent De Coninck is a speaker and/or consultant for BD, Coloplast, and Karl Storz, and has no specific conflicts relevant to this study. Andreas Skolarikos is a consultant for Boston Scientific, and has no specific conflicts relevant to this study. Olivier Traxer is a consultant for Coloplast, Karl Storz, Rocamed, Quanta Systems, Ambu, Boston Scientific, and IPG Medical, and has no specific conflicts relevant to this study. Etienne Xavier Keller is a speaker and/or consultant for Coloplast, Olympus, Boston Scientific, Recordati, Debiopharm and Alnylam, and has no specific conflicts of interest relevant to this work. All other authors have no conflicts of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Coninck, V., Skolarikos, A., Juliebø-Jones, P. et al. Advancements in stone classification: unveiling the beauty of urolithiasis. World J Urol 42, 46 (2024). https://doi.org/10.1007/s00345-023-04746-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00345-023-04746-9

Keywords

Navigation