Skip to main content
Log in

Unraveling the Role of Plant Growth Regulators and Plant Growth Promoting Rhizobacteria in Phytoremediation

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Phytoremediation is a technique for reducing or stabilizing hazardous chemicals in polluted soil or ground water. There is a loss of agricultural products and a degradation in food quality as a result of abiotic stresses, such as those generated by heavy metals and pesticides that have an effect on plants. These toxic compounds are extensively employed in agriculture, and they have a significant influence on both human health and agricultural output. The accumulation of these toxic, persistent, and poorly biodegradable compounds causes soil and ecological disparities. PGRs, or plant growth regulators, are an appealing possibility for increasing the efficacy of phytoremediation. Plant growth-promoting rhizobacteria (PGPR), a ubiquitous root microbiome, is widely used as a biocontrol agent. They have the ability to improve plant growth by colonizing plant roots, which can benefit the plant. Several PGPRs, including P. aeruginosa, B.gladioli, and P.pseudoalcali, have been shown to be resistant to biotic and abiotic stressors. Because of their ability to digest xenobiotic chemicals, plant growth-promoting rhizobacteria (PGPR) are a promising candidate for use in the phytoremediation process. Microorganisms inhabiting the rhizosphere participate in plant resistance mechanisms by secreting and generating a variety of important compounds such as siderophores, phytohormones, and metal-binding proteins. Rhizobacteria play an important role in phytoremediation of pesticide- and heavy metal-polluted soil by decomposing toxicants and promoting plant development via mechanisms such as chelation, acidification, and phosphate solubilization. Plant growth regulators (PGRs) increase plant biomass while reducing the negative impacts of contaminants and boosting growth in harsh settings. The use of certain PGRs as exogenous treatments have also been investigated as a potential way to improving crop stress tolerance; however the efficiency varies depending on the specific stress and plant type. Several plant growth regulators, such as brassinosteroids, melatonin, strigolactones, and others, have been proven to be useful in overcoming abiotic stress. The current review focuses on the utilization of PGRs and PGPRs in phytoremediation of heavy metal and pesticide-polluted soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BCF:

Bio concentration factor

CAT:

Catalase

GST:

Glutathione S-transferase

NTA:

Nitrilotriacetic acid

PGPR:

Plant growth promoting rhizobacteria

PGR:

Plant growth regulator

References

  • Abhilash PC, Srivastava S, Srivastava P, Singh B, Jafri A, Singh N (2011) Influence of rhizospheric microbial inoculation and tolerant plant species on the rhizoremediation of lindane. Environ Exp Bot 74:127–130

    Article  CAS  Google Scholar 

  • Abou-Shanab RAI, Angle JS, Van Berkum P (2007) Chromate-tolerant bacteria for enhanced metal uptake by Eichhornia crassipes (Mart.). Int J Phytoremediation 9(2):91–105

    Article  CAS  PubMed  Google Scholar 

  • Adediran GA, Ngwenya BT, Mosselmans JFW, Heal KV, Harvie BA (2015) Mechanisms behind bacteria induced plant growth promotion and Zn accumulation in Brassica juncea. J Hazard Mater 283:490–499

    Article  CAS  PubMed  Google Scholar 

  • Agnello AC, Huguenot D, Van Hullebusch ED, Esposito G (2016) Citric acid-and Tween® 80-assisted phytoremediation of a co-contaminated soil: alfalfa (Medicago sativa L.) performance and remediation potential. Environ Sci Pollut Res 23:9215–9226

    Article  CAS  Google Scholar 

  • Ahemad M (2015) Phosphate-solubilizing bacteria-assisted phytoremediation of metalliferous soils: a review. Biotech 5:111–121

    Google Scholar 

  • Ahemad M, Khan MS (2011) Insecticide-tolerant and plant growth promoting Bradyrhizobium sp.(vigna) improves the growth and yield of greengram [Vigna radiata (L.) Wilczek] in insecticide-stressed soils. Symbiosis 54(1):17–27

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2012) Productivity of greengram in tebuconazole-stressed soil, by using a tolerant and plant growth-promoting Bradyrhizobium sp. MRM6 strain. Acta Physiol Plant 34(1):245–254

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2012) Alleviation of fungicide-induced phytotoxicity in greengram [Vigna radiata (L.) Wilczek] using fungicide-tolerant and plant growth promoting Pseudomonas strain. Saudi J Biol Sci 19(4):451–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad M, Zahir ZA, Asghar HN, Asghar M (2011) Inducing salt tolerance in mung bean through coinoculation with rhizobia and plant-growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 57(7):578–589

    Article  CAS  PubMed  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91:869–881

    Article  CAS  PubMed  Google Scholar 

  • Aloni R, Aloni E, Langhans M, Ullrich CI (2006) Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot 97(5):883–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asghar H, Zahir Z, Arshad M, Khaliq A (2002) Relationship between in vitro production of auxins by rhizobacteria and their growth-promoting activities in Brassica juncea L. Biol Fertil Soils 35:231–237

    Article  CAS  Google Scholar 

  • Asselborn V, Fernández C, Zalocar Y, Parodi ER (2015) Effects of chlorpyrifos on the growth and ultrastructure of green algae Ankistrodesmus Gracilis. Ecotoxicol Environ Saf 120:334–341

    Article  CAS  PubMed  Google Scholar 

  • Babu AG, Kim JD, Oh BT (2013) Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. J Hazard Mater 250:477–483

    Article  PubMed  Google Scholar 

  • Becerra-Castro C, Prieto-Fernández Á, Kidd PS, Weyens N, Rodríguez-Garrido B, Touceda-González M, Vangronsveld J (2013) Improving performance of Cytisus striatus on substrates contaminated with hexachlorocyclohexane (HCH) isomers using bacterial inoculants: developing a phytoremediation strategy. Plant Soil 362(1–2):247–260

    Article  CAS  Google Scholar 

  • Bent E, Tuzun S, Chanway CP, Enebak S (2001) Alterations in plant growth and in root hormone levels of lodgepole pines inoculated with rhizobacteria. Can J Microbiol 47(9):793–800

    Article  CAS  PubMed  Google Scholar 

  • Bortoloti GA, Baron D (2023) Phytoremediation of toxic heavy metals by Brassica plants: a biochemical and physiological approach. Environ Adv 8:1002004. https://doi.org/10.1016/j.envadv.2022.100204

    Article  CAS  Google Scholar 

  • Bulak P, Walkiewicz A, Brzezińska M (2014) Plant growth regulators-assisted phytoextraction. Biol Plant 58:1–8

    Article  CAS  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (1998) A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbial 64(10):3663–3668

    Article  CAS  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46(3):237–245

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Luo S, Li X, Wan Y, Chen J, Liu C (2014) Interaction of Cd-hyperaccumulator Solanum nigrum L. and functional endophyte Pseudomonas sp. Lk9 on soil heavy metals uptake. Soil Biol Biochem 68:300–308

    Article  CAS  Google Scholar 

  • Choudhury MR, Islam MS, Ahmed ZU, Nayar F (2016) Phytoremediation of heavy metal contaminated buriganga riverbed sediment by Indian mustard and marigold plants. Environ Prog Sustain 35:117–124

    Article  CAS  Google Scholar 

  • Chouychai W (2012) Effect of some plant growth regulators on lindane and alpha-endosulfan toxicity to Brassica chinensis. J Environ Biol 33:811

    CAS  PubMed  Google Scholar 

  • Chouychai W, Kruatrachue M, Lee H (2015) Effect of Plant Growth Regulators on Phytoremediation of Hexachlorocyclohexane-Contaminated Soil. Int J Phytoremediation 17:1053–1059

    Article  CAS  PubMed  Google Scholar 

  • Clemens S, Ma JF (2016) Toxic heavy metal and metalloid accumulation in crop plants and foods. Annu Rev Plant Biol 67:489–512

    Article  CAS  PubMed  Google Scholar 

  • Damam M, Kaloori K, Gaddam B, Kausar R (2016) Plant growth promoting substances (phytohormones) produced by rhizobacterial strains isolated from the rhizosphere of medicinal plants. Int J Pharm Sci Rev Res 37(1):130–136

    CAS  Google Scholar 

  • Di Gregorio S, Barbafieri M, Lampis S, Sanangelantoni AM, Tassi E, Vallini G (2006) Combined application of Triton X-100 and Sinorhizobium sp. Pb002 inoculum for the improvement of lead phytoextraction by Brassica juncea in EDTA amended soil. Chemosphere 63(2):293–299

    Article  PubMed  Google Scholar 

  • Dimkpa CO, Merten D, Svatoš A, Büchel G, Kothe E (2009) Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. J Appl Microbiol 107(5):1687–1696

    Article  CAS  PubMed  Google Scholar 

  • Duruibe JO, Ogwuegbu MOC, Egwurugwu JN (2007) Heavy metal pollution and human biotoxic effects. Int J Phys Sci 2(5):112–118

    Google Scholar 

  • Dutta M, Devashis S, Raktim P, Ramen KK (2010) Effect of chlorpyrifos on microbial biomass and activities in tropical clay loam soil. Environ Monit Assess 160:385–391

    Article  CAS  PubMed  Google Scholar 

  • Eevers N, White JC, Vangronsveld J, Weyens N (2017) Bio-and phytoremediation of pesticide-contaminated environments: a review. In Advances in botanical research pp 277–318. Academic Press.

  • Egamberdiyeva D (2007) The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl Soil Ecol 36(2–3):184–189

    Article  Google Scholar 

  • Elbeltagy A, Nishioka K, Sato T, Suzuki H, Ye B, Hamada T, Minamisawa K (2001) Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species. Appl Environ Microbiol 67(11):5285–5293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farooq, M., Wahid, A., Kobayashi, N., Fujita, D. and Basra, S.M.A. (2009) Plant drought stress: effects, mechanisms and management. J. Sustain Agr. 153–188. Springer Dordrecht.

  • Fatnassi IC, Chiboub M, Saadani O, Jebara M, Jebara SH (2015) Impact of dual inoculation with Rhizobium and PGPR on growth and antioxidant status of Vicia faba L. under copper stress. Comptes Rendus Biol 338(4):241–254

    Article  Google Scholar 

  • Flores-Félix JD, Silva LR, Rivera LP, Marcos-García M, García-Fraile P, Martínez-Molina E, Rivas R (2015) Plants probiotics as a tool to produce highly functional fruits: the case of Phyllobacterium and vitamin C in strawberries. PLoS One 10(4):e0122281

    Article  PubMed  PubMed Central  Google Scholar 

  • Ganesan V (2008) Rhizoremediation of cadmium soil using a cadmium-resistant plant growth-promoting rhizopseudomonad. Curr Microbiol 56(4):403–407

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2011) Cadmium stress tolerance in crop plants: probing the role of sulfur. Plant Signal Behav 6:215–222. https://doi.org/10.4161/psb.6.2.14880

    Article  CAS  PubMed  Google Scholar 

  • Govindarajan M, Balandreau J, Kwon SW, Weon HY, Lakshminarasimhan C (2008) Effects of the inoculation of Burkholderia vietnamensis and related endophytic diazotrophic bacteria on grain yield of rice. Microb Ecol 55(1):21–37

    Article  PubMed  Google Scholar 

  • He LY, Chen ZJ, Ren GD, Zhang YF, Qian M, Sheng XF (2009) Increased cadmium and lead uptake of a cadmium hyperaccumulator tomato by cadmium-resistant bacteria. Ecotoxicol Environ Saf 72(5):1343–1348

    Article  CAS  PubMed  Google Scholar 

  • He CQ, Tan GE, Liang X, Du W, Chen YL, Zhi GY, Zhu Y (2010) Effect of Zn-tolerant bacterial strains on growth and Zn accumulation in Orychophragmus violaceus. Appl Soil Ecol 44(1):1–5

    Article  Google Scholar 

  • Hussein HS (2008) Optimization of plant-bacteria complex for phytoremediation of contaminated soils. Int J Bot 4(4):437–443

    Article  Google Scholar 

  • Jadia C.D., Fulekar M.H. (2009) Phytoremediation of heavy metals: recent techniques. Afr. J. Biotechnol. 8(6).

  • Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7(2):60–72

    Article  PubMed  PubMed Central  Google Scholar 

  • Jing YX, Yan JL, He HD, Yang DJ, Xiao L, Zhong T, Yuan M, Cai XD, Li SB (2014) Characterization of bacteria in the rhizosphere soils of Polygonum pubescens and their potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Int J Phytoremediation 16(4):321–333

    Article  CAS  PubMed  Google Scholar 

  • Ju C, Xu J, Wu X, Dong F, Liu X, Tian C, Zheng Y (2017) Effects of hexaconazole application on soil microbes community and nitrogen transformations in paddy soils. Sci Total Environ 609:655–663

    Article  CAS  PubMed  Google Scholar 

  • Jung JKHM, McCouch SRM (2013) Getting to the roots of it: genetic and hormonal control of root architecture. Front Plant Sci 4:186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanwar MK, Bhardwaj R, Arora P, Chowdhary SP, Sharma P, Kumar S (2012) Plant steroid hormones produced under Ni stress are involved in the regulation of metal uptake and oxidative stress in Brassica juncea L. Chemosphere 86(1):41–49

    Article  CAS  PubMed  Google Scholar 

  • Kapoor D, Singh MP, Kaur S, Bhardwaj R, Zheng B, Sharma A (2019) Modulation of the functional components of growth, photosynthesis, and anti-oxidant stress markers in cadmium exposed Brassica juncea L. Plants 8(8):260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kengar YD, Patil BJ (2017) Ureide content of guar under influence of hexaconazole and triazophos. J Fert Pest 8:2

    Google Scholar 

  • Khan AL, Waqas M, Kang SM, Al-Harrasi A, Hussain J, Al-Rawahi A, Lee IJ (2014) Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth. Journal of Microbiology. 52(8):689–695

    Article  CAS  PubMed  Google Scholar 

  • Khudhur M, Askar KA (2013) Effect of some pesticides on growth, nitrogen fixation and nifgenes in Azotobacter chroococcum and Azotobacter vinelandii isolated from soil. J Toxicol Environ Health Sci 5(9):166–171

    Article  Google Scholar 

  • Kohli SK, Handa N, Bali S, Arora S, Sharma A, Kaur R, Bhardwaj R (2018) Modulation of antioxidative defense expression and osmolyte content by co-application of 24-epibrassinolide and salicylic acid in Pb exposed Indian mustard plants. Ecotoxicol Environ Saf 147:382–393

    Article  Google Scholar 

  • Korade DL, Fulekar MH (2009) Rhizosphere remediation of chlorpyrifos in mycorrhizospheric soil using ryegrass. J Hazard Mater 172(2–3):1344–1350

    Article  CAS  PubMed  Google Scholar 

  • Kumar KV, Singh N, Behl HM, Srivastava S (2008) Influence of plant growth promoting bacteria and its mutant on heavy metal toxicity in Brassica juncea grown in fly ash amended soil. Chemosphere 72(4):678–683

    Article  CAS  PubMed  Google Scholar 

  • Kumar KV, Srivastava S, Singh N, Behl HM (2009) Role of metal resistant plant growth promoting bacteria in ameliorating fly ash to the growth of Brassica juncea. J Hazard Mater 170(1):51–57

    Article  CAS  PubMed  Google Scholar 

  • Kumar H, Bajpai VK, Dubey RC, Maheshwari DK, Kang SC (2010) Wilt disease management and enhancement of growth and yield of Cajanus cajan (L) var. Manak by bacterial combinations amended with chemical fertilizer. Crop Protection 29(6):591–598

    Article  Google Scholar 

  • Kumar S, Dubey RS, Tripathi RD, Chakrabarty D, Trivedi PK (2015) Omics and biotechnology of arsenic stress and detoxification in plants: current updates and prospective. Environ Int 74:221–230. https://doi.org/10.1016/j.envint.2014.10.019

    Article  CAS  PubMed  Google Scholar 

  • Kuo HC, Juang DF, Yang L, Kuo WC, Wu YM (2014) Phytoremediation of soil contaminated by heavy oil with plants colonized by mycorrhizal fungi. Int J Environ Sci Technol 11:1661–1668

    Article  CAS  Google Scholar 

  • Lavakush JY, Jay Prakash V, Durgesh KJ, Ashok K (2014) Evaluation of PGPR and different concentration of phosphorus level on plant growth, yield and nutrient content of rice (Oryza sativa). Ecol Eng 62:123–128

    Article  Google Scholar 

  • Lee KY, Strand SE, Doty SL (2012) Phytoremediation of chlorpyrifos by populus and salix. Int J Phytoremediation 14:48–61

    Article  PubMed  Google Scholar 

  • Li WC, Ye ZH, Wong MH (2007) Effects of bacteria on enhanced metal uptake of the Cd/Zn-hyperaccumulating plant, Sedum alfredii. J Exp Bot 58(15–16):4173–4182

    Article  CAS  PubMed  Google Scholar 

  • López ML, Peralta-Videa JR, Benitez T, Gardea-Torresdey JL (2005) Enhancement of lead uptake by alfalfa (Medicago sativa) using EDTA and plant growth promoter. Chemosphere 61(4):595–598

    Article  PubMed  Google Scholar 

  • Luo JS, Huang J, Zeng DL, Peng JS, Zhang GB, Ma HL, Guan Y, Yi HY, Fu YL, Han B, Lin HX (2018) A defensin-like protein drives cadmium efflux and allocation in rice. Nat Commun 9:645

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma Y, Rajkumar M, Freitas H (2009) Inoculation of plant growth promoting bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea. J Environ Manage 90(2):831–837

    Article  PubMed  Google Scholar 

  • Ma Y, Oliveira RS, Nai F, Rajkumar M, Luo Y, Rocha I, Freitas H (2015) The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. J Environ Manage 156:62–69

    Article  CAS  PubMed  Google Scholar 

  • Maddela NR, Venkateswarlu K (2018) Impact of Acephate and Buprofezin on Soil Amylases. Insecticides Soil Microbiota Interactions. Springer, Cham

    Chapter  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Hari K, Saravanan VS, Sa T (2006) Influence of pesticides on the growth rate and plant-growth promoting traits of Gluconacetobacter diazotrophicus. Pestic Biochem Physiol 84(2):143–154

    Article  CAS  Google Scholar 

  • Mani D, Kumar C, Patel NK (2016) Integrated micro-biochemical approach for phytoremediation of cadmium and lead contaminated soils using Gladiolus grandiflorus L cut flower. Ecotoxicol Environ Saf 124:435–446

    Article  CAS  PubMed  Google Scholar 

  • Mazzola M, Fujimoto DK, Thomashow LS, Cook RJ (1995) Variation in sensitivity of Gaeumannomyces graminis to antibiotics produced by fluorescent Pseudomonas spp. and effect on biological control of take-all of wheat. Appl Environ Microbiol 61(7):2554–2559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menon P, Gopal M, Prasad R (2004) Influence of two insecticides, chlorpyrifos and quinalphos, on arginine ammonification and mineralizable nitrogen in two tropical soil types. J Agric Food Chem 52(24):7370–7376

    Article  CAS  PubMed  Google Scholar 

  • Muñoz-Rojas J, Caballero-Mellado J (2003) Population dynamics of Gluconacetobacter diazotrophicus in sugarcane cultivars and its effect on plant growth. Microb Ecol 46(4):454–464

    Article  PubMed  Google Scholar 

  • Murai N (2014) Plant growth hormone cytokinins control the crop seed yield. Am J Plant Sci 5(14):2178

    Article  CAS  Google Scholar 

  • Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32(2):429–448

    Article  PubMed  Google Scholar 

  • Narożna D, Pudełko K, Króliczak J, Golińska B, Sugawara M, Mądrzak CJ, Sadowsky MJ (2015) Survival and competitiveness of Bradyrhizobium japonicum strains 20 years after introduction into field locations in Poland. Appl Environ Microbiol 81(16):5552–5559

    Article  PubMed  PubMed Central  Google Scholar 

  • Nie L, Shah S, Rashid A, Burd GI, Dixon DG, Glick BR (2002) Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobacter cloacae CAL2. Plant Physiol Biochem 40(4):355–361

    Article  CAS  Google Scholar 

  • Nonnoi F, Chinnaswamy A, de la Torre VSG, de la Pena TC, Lucas MM, Pueyo JJ (2012) Metal tolerance of rhizobial strains isolated from nodules of herbaceous legumes (Medicago spp. and Trifolium spp.) growing in mercury-contaminated soils. Appl Soil Ecol 61:49–59

    Article  Google Scholar 

  • Orlandini, V., Emiliani, G., Fondi, M., Maida, I., Perrin, E. and Fani, R. (2014) Network analysis of plasmidomes: The Azospirillum brasilense Sp245 case. Int. J. Evol. Biol. 2014.

  • Otieno N, Lally RD, Kiwanuka S, Lloyd A, Ryan D, Germaine KJ, Dowling DN (2015) Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front Microbiol 6:745

    Google Scholar 

  • Oyedele AO, Ogunbanwo TS (2014) Antifungal activities of Bacillus subtilis isolated from some condiments and soil. Afr J Microbiol Res 8(18):1841–1849

    Article  Google Scholar 

  • Panagiotis L, Joseph M, Roel R (2018) Phytochrome and phytohormones: working in tandem for plant growth and development. Front Plant Sci 9:1037

    Article  Google Scholar 

  • Parween T, Bhandari P, Sharma R, Jan S, Siddiqui ZH, Patanjali PK (2018) Bioremediation: a sustainable tool to prevent pesticide pollution. Modern Age Environmental Problems and their Remediation. Springer, Cham, pp 215–227

    Chapter  Google Scholar 

  • Pedron F, Rosellini R, Petruzilli E, Barbafeiri M (2014) Chelant assisted phytoextraction of lead from contaminated soil. Res Environ 4(5):209–214

    Google Scholar 

  • Prathap M, Ranjitha Kumari BD (2015) A critical review on plant growth promoting rhizobacteria. J Plant Pathol Microbiol. https://doi.org/10.4172/2157-7471.1000266

    Article  Google Scholar 

  • Qian J, Li D, Zhan G, Zhang L, Su W, Gao P (2012) Simultaneous biodegradation of Ni–citrate complexes and removal of nickel from solutions by Pseudomonas alcaliphila. Bioresour Technol 116:66–73

    Article  CAS  PubMed  Google Scholar 

  • Qu J, Yuan X, Cong Q, Wang L (2011) The effect of sodium hydrogen phosphate/citric acid mixtures on phytoremediation by alfalfa & metals availability in soil. J Soil Sci Plant Nutr 11:86–96

    Article  Google Scholar 

  • Radzki W, Mañero FG, Algar E, García JL, García-Villaraco A, Solano BR (2013) Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Antonie Van Leeuwenhoek 104(3):321–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rai PK, Lee SS, Zhang M, Tsang YF, Him KH (2019) Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environ Int 125:365–385

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar M, Freitas H (2008) Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals. Chemosphere 71(5):834–842

    Article  CAS  PubMed  Google Scholar 

  • Rani A, Shouche YS, Goel R (2008) Declination of copper toxicity in pigeon pea and soil system by growth-promoting Proteus vulgaris KNP3 strain. Curr Microbiol 57(1):78

    Article  CAS  PubMed  Google Scholar 

  • Reed ML, Glick BR (2005) Growth of canola (Brassica napus) in the presence of plant growth-promoting bacteria and either copper or polycyclic aromatic hydrocarbons. Can J Microbiol 51(12):1061–1069

    Article  CAS  PubMed  Google Scholar 

  • Roux, S.J., Clark, G.B. and Hiebert, S.L., Cottongen LLC and University of Texas System, (2018) Fungicide enhancers effective for treating plants infected with fungal pathogens. U.S. Patent Application 15/547,008.

  • Sabry SR, Saleh SA, Batchelor CA, Jones J, Jotham J, Webster G, Cocking EC (1997) Endophytic establishment of Azorhizobium caulinodans in wheat. Procee Royal Soc of London. Series B: Biol Sci 264(1380):341–346

    Article  Google Scholar 

  • Safronova VI, Stepanok VV, Engqvist GL, Alekseyev YV, Belimov AA (2006) Root-associated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biol Fertil Soils 42(3):267–272

    Article  CAS  Google Scholar 

  • Saha M, Sarkar S, Sarkar B, Sharma BK, Bhattacharjee S, Tribedi P (2016) Microbial siderophores and their potential applications: a review. Environ Sci Pollut Res 23(5):3984–3999

    Article  CAS  Google Scholar 

  • Sangeeth KP, Bhai RS, Srinivasan V (2012) Paenibacillus glucanolyticus, a promising potassium solubilizing bacterium isolated from black pepper (Piper nigrum L.) rhizosphere. J Spices and Aromatic Crops 21(2):118–124

    Google Scholar 

  • Sarret G, Saumitou-Laprade P, Bert V, Proux O, Hazemann J-L, Traverse A (2002) Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri. Plant Physiol 130:1815–1826. https://doi.org/10.1104/pp.007799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarwar M, Salman M (2015) Toxicity of oils formulation as a new useful tool in crop protection for insect pests control. Int J Chem Biomol Sci 1(4):297–302

    CAS  Google Scholar 

  • Satarug S, Baker JR, Reilly PEB, Moore MR, Williams DJ (2002) Cadmium levels in the lung, liver, kidney cortex and urine samples from Australians without occupational exposure to metals. Arch Environ Health 57:69–77. https://doi.org/10.1080/00039890209602919

    Article  CAS  PubMed  Google Scholar 

  • Seneviratne M, Gunaratne S, Bandara T, Weerasundara L, Rajakaruna N, Seneviratne G, Vithanage M (2016) Plant growth promotion by Bradyrhizobium japonicum under heavy metal stress. S Afr J Bot 105:19–24

    Article  CAS  Google Scholar 

  • Sethi PK, Muralidhara S, Bruckner JV, White CA (2014) Measurement of plasma protein and lipoprotein binding of pyrethroids. J Pharmacol Toxicol Methods 70:106–111

    Article  CAS  PubMed  Google Scholar 

  • Shahid M, Khan MS (2018) Cellular destruction, phytohormones and growth modulating enzymes production by Bacillus subtilis strain BC8 impacted by fungicides. Pestic Biochem Physiol 149:8–19

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Bhardwaj R (2007) Effects of 24-epibrassinolide on growth and metal uptake in Brassica juncea L. under copper metal stress. Acta Physiol Plant 29(3):259–263

    Article  CAS  Google Scholar 

  • Sharma A, Bhardwaj R, Kumar V, Thukral AK (2016a) GC-MS studies reveal stimulated pesticide detoxification by brassinolide application in Brassica juncea L. plants. Environ Sci Pollut R 23:14518–14525

    Article  CAS  Google Scholar 

  • Sharma P, Kumar A, Bhardwaj R (2016b) Plant steroidal hormone epibrassinolide regulate–Heavy metal stress tolerance in Oryza sativa L. by modulating antioxidant defense expression. Environ Exp Bot 122:1–9

    Article  Google Scholar 

  • Sharma A, Kumar V, Yuan H, Kanwar MK, Thukral AK, Bhardwaj R, Zheng B (2018) Jasmonic acid seed treatment stimulates insecticide detoxification in Brassica juncea L. Front Plant Sci 9:1609

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma, P.,and Dubey, R. S. (2006). “Cadmium uptake and its toxicity in higher plants,” in Cadmium Toxicity and Tolerance in Plants, eds N. A. Khan and Samiullah (New Delhi: Narosa Publishing House), 64–86.

  • Sherman, T.D., Vaughn, K.C. and Duke, S.O. (2018) Mechanisms of action and resistance to herbicides. In Herbicide-Resistant Crops (13–35). CRC Press.

  • Shilev S, Fernández A, Benlloch M, Sancho ED (2006) Sunflower growth and tolerance to arsenic is increased by the rhizospheric bacteria Pseudomonas fluorescens. Phytoremediation of metal-contaminated soils. Springer, Dordrecht, pp 315–318

    Chapter  Google Scholar 

  • Simmons, M. (2017) The new industrial agriculture: The regional integration of specialty crop production. In The Rural (3–22). Routledge.

  • Simonet P, Normand P, Moiroud A, Bardin R (1990) Identification of Frankia strains in nodules by hybridization of polymerase chain reaction products with strain-specific oligonucleotide probes. Arch Microbiol 153(3):235–240

    Article  CAS  PubMed  Google Scholar 

  • Singh V, Singh P, Singh N (2016) Synergistic influence of Vetiveria zizanioides and selected rhizospheric microbial strains on remediation of endosulfan contaminated soil. Ecotoxicology 25:1327–1337

    Article  CAS  PubMed  Google Scholar 

  • Skoog F, Miller C (1957) Chemical regulation of growth and organ formation in plant tissues cultured. In Vitro, Symp. Soc. Exp. Biol. 11:118–131

    CAS  PubMed  Google Scholar 

  • Sofo A, Antonio S, Stefano D, Angelo M, Vincenzo P (2012) Toxic effects of four sulphonylureas herbicides on soil microbial biomass. J Environ Sci Health 47:653–659

    Article  CAS  Google Scholar 

  • Someya N, Sato Y, Yamaguchi I, Hamamoto H, Ichiman Y, Akutsu K, Tsuchiya K (2007) Alleviation of nickel toxicity in plants by a rhizobacterium strain is not dependent on its siderophore production. Commun Soil Sci Plant Anal 38(9–10):1155–1162

    Article  CAS  Google Scholar 

  • Spence C, Bais H (2015) Role of plant growth regulators as chemical signals in plant–microbe interactions: a double edged sword. Curr Opin Plant Biol 27:52–58

    Article  CAS  PubMed  Google Scholar 

  • Stefanescu IA (2015) Bioaccumulation of heavy metals by Bacillus megaterium from phosphogypsum waste. Sci Study Res. Chem Chem Eng, Biotechnol, Food Industry 16(1):93

    CAS  Google Scholar 

  • Sun R-L, Zhou Q-X, Jin C-X (2006) Cadmium accumulation in relation to organic acids in leaves of Solanum nigrum L. as a newly found cadmium hyper-accumulator. Plant Soil 285:125–134. https://doi.org/10.1007/s11104-006-0064-6

    Article  CAS  Google Scholar 

  • Sun X, Zhu L, Wang J, Wang J, Su B, Du Z, Guo P (2017) Effects of endosulfan on the populations of cultivable microorganisms and the diversity of bacterial community structure in Brunisolic soil. Water Air Soil Pollut 228(4):169

    Article  Google Scholar 

  • Sureshbabu K, Amaresan N, Kumar K (2016) Amazing multiple function properties of plant growth promoting rhizobacteria in the rhizosphere soil. Int J Curr Microbiol App Sci 5(2):661–683

    Article  CAS  Google Scholar 

  • Tassi E, Pouget J, Petruzzelli G, Barbafieri M (2008) The effects of exogenous plant growth regulators in the phytoextraction of heavy metals. Chemosphere 71:66–73

    Article  CAS  PubMed  Google Scholar 

  • Thao NP, Khan MI, Thu NB, Hoang XL, Asgher M, Khan NA, Tran LS (2015) Role of ethylene and its cross talk with other signaling molecules in plant responses to heavy metal stress. Plant Physiol 169(1):73–84

    Article  PubMed  PubMed Central  Google Scholar 

  • Tripathi M, Munot HP, Shouche Y, Meyer JM, Goel R (2005) Isolation and functional characterization of siderophore-producing lead-and cadmium-resistant Pseudomonas putida KNP9. Curr Microbiol 50(5):233–237

    Article  CAS  PubMed  Google Scholar 

  • Varshney S, Khan MIR, Masood A, Per TS, Rasheed F, Khan NA (2015) Contribution of plant growth regulators in mitigation of herbicidal stress. J Plant Biochem Physiol. https://doi.org/10.4172/2329-9029.1000160

    Article  Google Scholar 

  • Verma JP, Yadav J, Tiwari KN, Kumar A (2013) Effect of indigenous Mesorhizobium spp. and plant growth promoting rhizobacteria on yields and nutrients uptake of chickpea (Cicer arietinum L.) under sustainable agriculture. Ecol Eng 51:282–286

    Article  Google Scholar 

  • Verma PK, Verma S, Pande V, Mallick S, Tripathi RD, Dhankher OP (2016) Overexpression of rice glutaredoxin OsGrx_C7 and OsGrx_C2. 1 reduces intracellular arsenic accumulation and increases tolerance in Arabidopsis thaliana. Front Plant Sci 7:189726

    Google Scholar 

  • Vivas A, Azcón R, Biró B, Barea JM, Ruiz-Lozano JM (2003) Influence of bacterial strains isolated from lead-polluted soil and their interactions with arbuscular mycorrhizae on the growth of Trifolium pratense L. under lead toxicity. Canadian J Microbiol 49(10):577–588

    Article  CAS  Google Scholar 

  • Vymazal J, Březinová T (2016) Accumulation of heavy metals in aboveground biomass of Phragmites australis in horizontal flow constructed wetlands for wastewater treatment: a review. Chem Eng J 290:232–242

    Article  CAS  Google Scholar 

  • Walvekar VA, Bajaj S, Singh DK, Sharma S (2017) Ecotoxicological assessment of pesticides and their combination on rhizospheric microbial community structure and function of Vigna radiata. Environ Sci Pollu Res 24(20):17175–17186

    Article  CAS  Google Scholar 

  • Whiting SN, de Souza MP, Terry N (2001) Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environ Sci Technol 35(15):3144–3150

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Xu J, Dong F, Liu X, Zheng Y (2014) Responses of soil microbial community to different concentration of fomesafen. J Hazard Mater 273:155–164

    Article  CAS  PubMed  Google Scholar 

  • Wu M, Li G, Chen X, Liu J, Liu M, Jiang C, Li Z (2018) Rational dose of insecticide chlorantraniliprole displays a transient impact on the microbial metabolic functions and bacterial community in a silty-loam paddy soil. Sci Total Environ 616:236–244

    Article  PubMed  Google Scholar 

  • Xiong J, Tao G, Zhu C (2010) Roles of nitric oxide in alleviating heavy metal toxicity in plants. Arch Biochem Biophys 497(1):13–20

    Article  CAS  PubMed  Google Scholar 

  • Yan A, Wang Y, Tan SN, Ghosh S, Chen Z (2020) Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Front Plant Sci. https://doi.org/10.3389/fpls.2020.00359

    Article  PubMed  PubMed Central  Google Scholar 

  • Zaidi S, Usmani S, Singh BR, Musarrat J (2006) Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64(6):991–997

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Zhang L, Zhang X, Xu Y, Wei Z, Sun B, Xu L (2019) Regulation of endogenous phytohormones alters the fluoranthene content in Arabidopsis thaliana. Sci Total Environ 11:212–215

    Google Scholar 

  • Złoch M, Thiem D, Gadzała-Kopciuch R, Hrynkiewicz K (2016) Synthesis of siderophores by plant-associated metallotolerant bacteria under exposure to Cd2+. Chemosphere 156:312–325

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SJ and RD: designed and conceptualized the study. SJ: Prepared the manuscript. SJ and NR: edited the manuscript. RD and RB: Prepared final draft of the manuscript.

Corresponding author

Correspondence to Rattandeep Singh.

Ethics declarations

Conflict of Interest

All the authors declares that there is no conflict of interest.

Additional information

Handling Author: Parvaiz Ahmad.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jan, S., Bhardwaj, R., Sharma, N.R. et al. Unraveling the Role of Plant Growth Regulators and Plant Growth Promoting Rhizobacteria in Phytoremediation. J Plant Growth Regul (2024). https://doi.org/10.1007/s00344-024-11284-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00344-024-11284-0

Keywords

Navigation