Skip to main content
Log in

Insecticide-tolerant and plant growth promoting Bradyrhizobium sp. (vigna) improves the growth and yield of greengram [Vigna radiata (L.) Wilczek] in insecticide-stressed soils

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

This study was designed to identify rhizobial strains specific to greengram expressing higher tolerance against insecticides, fipronil and pyriproxyfen, and synthesizing plant growth regulators even amid insecticide-stress. Of the 50 bradyrhizobial isolates, the Bradyrhizobium sp. strain MRM6 showed tolerance up to 1,600 μg mL−1 against each of fipronil and pyriproxyfen. The tolerant Bradyrhizobium sp. (vigna) produced plant growth promoting substances in substantial amounts, both in the presence and absence of insecticides. The strain MRM6 was further used to investigate its impact on greengram grown in soils treated with 200 (the recommended dose), 400 and 600 μg kg−1 soil of fipronil and 1,300 (the recommended dose), 2,600 and 3,900 μg kg−1 soil of pyriproxyfen. Fipronil at 600 μg kg−1 soils and pyriproxyfen at 3,900 μg kg−1 soils had greatest toxic effects and decreased plant biomass, symbiotic efficiency, nutrient uptake and seed yield of greengram plants. The Bradyrhizobium sp. (vigna) inoculant when used with fipronil and pyriproxyfen significantly increased the measured parameters compared to the plants grown in soils treated solely with the same concentration of each insecticide. This study inferred that the Bradyrhizobium sp. (vigna) strain MRM6 may be exploited as bio-inoculant to increase the productivity of greengram exposed to insecticide-stressed soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aggarwal TC, Narula N, Gupta KG (1986) Effect of some carbamate pesticides on nodulation, plant yield and nitrogen fixation by Pisum sativum and Vigna sinensis in the presence of their respective rhizobia. Plant Soil 94:125–132

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2011a) Pesticide interactions with soil microflora: importance in bioremediation. In: Ahmad I, Ahmad F, Pichtel J (eds) Microbes and microbial technology: agricultural and environmental applications. Springer, New York, pp 393–413

    Chapter  Google Scholar 

  • Ahemad M, Khan MS (2011b) Ecotoxicological assessment of pesticides towards the plant growth promoting activities of Lentil (Lens esculentus)-specific Rhizobium sp. strain MRL3. Ecotoxicology. doi:10.1007/s10646-011-0606-4

  • Alexander DB, Zuberer DA (1991) Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol Fertil Soils 12:39–45

    Article  CAS  Google Scholar 

  • Bakker AW, Schipper B (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp. mediated plant growth stimulation. Soil Biol Biochem 19:451–457

    Article  CAS  Google Scholar 

  • Bashan Y, Holguin G, de Bashan L (2004) Azospirillum–plant relationships: physiological, molecular, agricultural, and environmental advances. Can J Microbiol 50:521–577

    Article  PubMed  CAS  Google Scholar 

  • Brick JM, Bostock RM, Silversone SE (1991) Rapid in situ assay for indole acetic acid production by bacteria immobilized on nitrocellulose membrane. Appl Environ Microbiol 57:535–538

    Google Scholar 

  • Devi KK, Seth N, Kothamasi S, Kothamasi D (2007) Hydrogen cyanide-producing rhizobacteria kill subterranean termite Odontotermes obesus (rambur) by cyanide poisoning under in vitro conditions. Curr Microbiol 54:74–78

    Article  PubMed  CAS  Google Scholar 

  • Dye DW (1962) The inadequacy of the usual determinative tests for the identification of Xanthomonas spp. NZ J Sci 5:393–416

    Google Scholar 

  • Etesami H, Alikhani HA, Rastin NS (2008) The effect of superior IAA producing rhizobia and their combination with Ag and Trp on wheat growth indices. World Appl Sci J 5:272–275

    Google Scholar 

  • Evans J, Seidel J, O’Connor GE, Watt J, Sutherland M (1991) Using omethoate insecticide and legume inoculant on seed. Aust J Exp Agric 31:71–76

    Article  CAS  Google Scholar 

  • Figueiredo MVB, Martinez CR, Burity HA, Chanway CP (2007) Plant growth promoting rhizobacteria for improving nodulation and nitrogen fixation in the common bean (Phaseolus vulgaris L). World J Microbiol Biotechnol 24:1187–1193

    Article  Google Scholar 

  • Fox JE, Gulledge J, Engelhaupt E, Burow ME, McLachlan JA (2007) Pesticides reduce symbiotic efficiency of nitrogen-fixing rhizobia and host plants. Proc Natl Acad Sci 104:10282–10287

    Article  PubMed  CAS  Google Scholar 

  • Frankenberger WT Jr, Arshad M (1995) Phytohormones in soils: microbial production and function. Marcel Dekker, New York

    Google Scholar 

  • Gordon S, Weber RP (1951) The colorimetric estimation of IAA. Plant Physiol 26:192–195

    Article  PubMed  CAS  Google Scholar 

  • Holt JG, Krieg NR, Sneath PHA, Staley JT, Willams ST (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williams and Wilkins, Baltimore, USA

    Google Scholar 

  • Iswaran V, Marwah TS (1980) A modified rapid Kjeldahl method for determination of total nitrogen in agricultural and biological materials. Geobios 7:281–282

    Google Scholar 

  • Jackson ML (1967) Soil chemical analysis. Prentice-Hall of India, New Delhi, pp 134–144

    Google Scholar 

  • Joseph B, Patra RR, Lawrence R (2007) Characterization of plant growth promoting rhizobacteria associated with chickpea (Cicer arietinum L.). Int J Plant Prod 2:141–152

    Google Scholar 

  • Kaur A, Kaur A (2005) Impact of imidacloprid on soil fertility and nodulation in mung bean (Vigna radiata). Asian J Water Environ Pollut 2:63–67

    CAS  Google Scholar 

  • Lancaster SH, Hollister EB, Senseman SA, Gentry TJ (2010) Effects of repeated glyphosate applications on soilmicrobial community composition and the mineralization of glyphosate. Pest Manag Sci 66:59–64

    Article  PubMed  CAS  Google Scholar 

  • Mehta P, Chauhan A, Mahajan R, Mahajan PK, Shirkot CK (2010) Strain of Bacillus circulans isolated from apple rhizosphere showing plant growth promoting potential. Curr Sci 98:538–542

    CAS  Google Scholar 

  • Mody BR, Bindra MO, Modi VV (1989) Extracellular polysaccharides of cowpea rhizobia: compositional and functional studies. Arch Microbiol 1:2–5

    Google Scholar 

  • Nazarian A, Mousawi M (2005) Study of bacterial resistance to organophosphorous pesticides in Iran. Iran J Environ Health Sci Engg 2:207–211

    CAS  Google Scholar 

  • Neiland JB (1981) Microbial iron compounds. Ann Rev Biochem 50:715–731

    Article  Google Scholar 

  • Oğutcu H, Kasimoğlu C, Elkoca E (2010) Effects of Rhizobium strains isolated from wild chickpeas on the growth and symbiotic performance of chickpeas (Cicer arietinum L.) under salt stress. Turk J Agric For 34:361–371

    Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220

    Article  PubMed  CAS  Google Scholar 

  • Rangaswamy V, Venkateswarlu K (1993) Ammonification and nitrification in soils, and nitrogen fixation by Azospirillum sp. as influenced by cypermethrin and fenvalerate. Agric Ecosyst Environ 23:311–317

    Article  Google Scholar 

  • Reeves MW, Pine L, Neilands JB, Balows A (1983) Absence of siderophore activity in Legionella species grown in iron-deficient media. J Bacteriol 154:324–329

    PubMed  CAS  Google Scholar 

  • Sadasivam S, Manikam A (1992) Biochemical methods for agricultural sciences. Wiley Eastern Limited, New Delhi

    Google Scholar 

  • Shivaramaiah HM, Kennedy IR (2006) Biodegradation of endosulfan by a soil bacterium. J Environ Sci Health B 41:895–905

    PubMed  CAS  Google Scholar 

  • Singh J, Singh DK (2006) Ammonium, nitrate and nitrite nitrogen and nitrate reductase enzyme activity in groundnut (Arachis hypogaea L.) fields after diazinon, imidacloprid and lindane treatments. J Environ Sci Health B 41:1305–1318

    Article  PubMed  CAS  Google Scholar 

  • Somasegaran P, Hoben HJ (1994) Handbook for rhizobia: methods in legume Rhizobium technology. Springer, New York

    Google Scholar 

  • Spaink HP (2000) Root nodulation and infection factors produced by rhizobial bacteria. Annu Rev Microbiol 54:257–288

    Article  PubMed  CAS  Google Scholar 

  • Srinivas T, Sridevi M, Mallaiah KV (2008) Effect of pesticides on Rhizobium and nodulation of green gram Vigna Radita (L.) Wilczek. ICFAI J Life Sci 2:36–44

    Google Scholar 

  • Van Noorden GE, Ross JJ, Reid JB, Rolfe BG, Mathesius U (2006) Defective long-distance auxin transport regulation in the Medicago truncatula super numeric nodules mutant 1[W]. Plant Physiol 140:1494–1506

    Article  PubMed  Google Scholar 

  • Vasileva V, Ilieva A (2007) Effect of presowing treatment of seeds with insecticides on nodulating ability, nitrate reductase activity and plastid pigments content of lucerne (Medicago sativa L.). Agron Res 5:87–92

    Google Scholar 

  • Vincent JM (1970) A manual for the practical study of root nodule bacteria. Blackwell, Oxford

    Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007) Effect of metal tolerant plant growth promoting Bradyrhizobium sp (vigna) on growth, symbiosis, seed yield and metal uptake by greengram plants. Chemosphere 70:36–45

    Article  PubMed  CAS  Google Scholar 

  • Zaidi A, Khan MS, Ahemad M, Oves M (2009) Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiol Immunol Hung 56:263–284

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. N. A. Naqvi, Parijat Agrochemicals, New Delhi, India, for providing technical grade insecticides and University Grants Commission (UGC), New Delhi, India, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Munees Ahemad or Mohammad Saghir Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahemad, M., Khan, M.S. Insecticide-tolerant and plant growth promoting Bradyrhizobium sp. (vigna) improves the growth and yield of greengram [Vigna radiata (L.) Wilczek] in insecticide-stressed soils. Symbiosis 54, 17–27 (2011). https://doi.org/10.1007/s13199-011-0122-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-011-0122-6

Keywords

Navigation