Skip to main content
Log in

Filamentation Temperature-Sensitive (FtsH); Key Player in Response to Multiple Environmental Stress Conditions and Developmental Stages in Potato

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Biotic and abiotic stresses are among major factors limiting crop yields, and Filamentation temperature-sensitive (FtsH) genes are one of the key regulators of plant response to these stresses. The FtsH is an ATP-dependent metalloprotease in prokaryotes and eukaryotes. Due to the economic importance and cultivation of potato grown in the biotic and abiotic stress prone areas, identification and characterization of FtsH family members are crucially important. The present research was conducted to investigate FtsH family members in potato under stressful regime. To detect the FtsH genes in potato, we performed genome-wide analysis of FtsH genes in the Solanum tuberosum genome using the Ensemble Plant. All putative sequences were approved with the Pfam. Bioinformatics analysis was conducted using phylogenetic tree, gene structure, Transcription factor-binding site (TFBS) analysis, protein–protein interaction, and gene expression. The members of FtsH were categorized into eight groups. Some of the FtsH proteins were subcellularly located in the nucleus and chloroplast. The number of introns was ranged from 3 to 14 in gene family members. Totally, 33 TFBS including biotic and abiotic stress-responsive elements were found in FtsH promoter sequences. MYB and WRKY were the highest number among TFBS which were involved in abiotic and biotic stresses. Gene expression analysis revealed that the StFtsH2 and StFtsH5 had the highest gene expression, induced by abiotic and biotic stresses in all three tissues of stem, root, and leaves. It is expected that the StFtsH2 and StFtsH5 could be used in plant manipulation and breeding programs aimed for tolerance enhancement to abiotic (cold, heat, and high light) and biotic stresses [Potato virus Y (PVY), Potato virus X (PVX), Potato virus A (PVA), Potato virus X (PVA), and Potato virus S (PVS)].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AP2:

APETALA2

ATH:

AT hook

B3:

B3 DNA-binding domain (DBD)

bHLH:

Basic Helix–Loop–Helix

bZIP:

Basic Leucine Zipper

C2H2 ZF:

Cchhc domain of neural zinc finger factor

CSD:

Cold shock domain

Dof:

Dof (DNA binding with one finger) domain

EIN3:

Ethylene insensitive 3

FAR1:

FAR domain (Finger-Associated Repeats)

GATA:

GATA-binding factors

HB:

Homeodomain

LOB:

Lateral organ boundaries

MADS box:

The conserved domain originally discovered in four genes (MCM1, AG, DEF A, and SRF)

Myb:

Myeloblastosis

NAC:

No apical meristem [NAM], Arabidopsis transcription activation factor [ATAF], and cup-shaped cotyledon [CUC])-domain transcription factor gene

SBP:

SQUAMOSA-pROMOTER-BINDING PROTEIN

STK:

Storekeeper

TCP:

Teosinte branched 1 (tb1, Zea mays (Maize)), cycloidea (cyc) (Antirrhinum majus) (Garden snapdragon) and PCF in rice (Oryza sativa)

WRKY:

WRKY transcription factor family

ZF-HD:

Zinc finger homeodomain

Trihelix:

Helix–loop–helix–loop–helix

SRS:

SHORT INTERNODES-related sequence

SOX:

SRY-related high-mobility group box

WRC:

Trp-Arg-Cys

WOX:

WUSCHEL-related homeobox

BES1:

BRI1-EMSSUPPRESSOR1

VOZ:

VASCULAR PLANT ONE-ZINC FINGER

NF-YB:

Nuclear Transcription Factor Y Subunit Beta

TCR:

Transcription-coupled repeat

MADF:

Mothers against Dpp factor

ARF:

Auxin-responsive element

HSF:

Heat Shock Factor

HD-ZIP:

Homeodomain-leucine zipper

References

  • Ahuja I, de Vos RC, Bones AM, Hall RD (2010) Plant molecular stress responses face climate change. Trends Plant Sci 15(12):664–674

    Article  CAS  PubMed  Google Scholar 

  • Ali M, Baek KH (2020) Protective roles of cytosolic and plastidal proteasomes on abiotic stress and pathogen invasion. Plants 9(7):832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arefian M, Vessal S, Malekzadeh-Shafaroudi S, Siddique KH, Bagheri A (2019) Comparative proteomics and gene expression analyses revealed responsive proteins and mechanisms for salt tolerance in chickpea genotypes. BMC Plant Biol 19(1):1–26

    Article  CAS  Google Scholar 

  • Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202-208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang WC, Lee TY, Huang HD, Huang HY, Pan RL (2008) PlantPAN: plant promoter analysis navigator, for identifying combinatorial cis-regulatory elements with distance constraint in plant gene groups. BMC Genom 9(1):1–4

    Article  CAS  Google Scholar 

  • Chen J, Burke JJ, Velten J, Xin Z (2006) FtsH11 protease plays a critical role in Arabidopsis thermotolerance. Plant J 48(1):73–84

    Article  CAS  PubMed  Google Scholar 

  • Desclos M, Etienne P, Coquet L, Jouenne T, Bonnefoy J, Segura R, Reze S, Ourry A, Avice JC (2009) A combined 15N tracing/proteomics study in Brassica napus reveals the chronology of proteomics events associated with N remobilisation during leaf senescence induced by nitrate limitation or starvation. Proteomics 9(13):3580–3608

    Article  CAS  PubMed  Google Scholar 

  • Gibala M, Kicia M, Sakamoto W, Gola EM, Kubrakiewicz J, Smakowska E, Janska H (2009) The lack of mitochondrial AtFtsH4 protease alters Arabidopsis leaf morphology at the late stage of rosette development under short-day photoperiod. Plant J 59(5):685–699

    Article  CAS  PubMed  Google Scholar 

  • Guo AY, Zhu QH, Chen X, Luo JC (2007) GSDS: a gene structure display server. Hereditas 29(8):1023–1026

    CAS  PubMed  Google Scholar 

  • Guo Z, Gao X, Cai H, Yu L, Gu C, Zhang SL (2021) Genome-wide identification, evolution and expression analysis of the FtsH gene during fruit development in pear (Pyrus bretschneideri). Plant Biotechnol Rep 15(4):537–550

    Article  CAS  Google Scholar 

  • Gururani MA, Venkatesh J, Tran LS (2015) Regulation of photosynthesis during abiotic stress-induced photoinhibition. Mol Plant 8(9):1304–1320

    Article  CAS  PubMed  Google Scholar 

  • Hajibarat Z, Saidi A, Zeinalabedini M, Gorji AM, Ghaffari MR, Shariati V, Ahmadvand R (2022) Genome-wide identification of StU-box gene family and assessment of their expression in developmental stages of Solanum tuberosum. J Genet Eng Biotechnol 20(1):1–21

    Article  Google Scholar 

  • He GH, Xu JY, Wang YX, Liu JM, Li PS, Chen M, Ma YZ, Xu ZS (2016) Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis. BMC Plant Biol 16(1):1–6

    Article  Google Scholar 

  • Herman C, Thévenet D, D’Ari RI, Bouloc P (1995) Degradation of sigma 32, the heat shock regulator in Escherichia coli, is governed by HflB. PNAS 92(8):3516–3520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hrmova M, Hussain SS (2021) Plant transcription factors involved in drought and associated stresses. Int J Mol Sci 22(11):5662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivashuta S, Imai R, Uchiyama K, Gau M, Shimamoto Y (2002) Changes in chloroplast FtsH-like gene during cold acclimation in alfalfa (Medicago sativa). J Plant Physiol 159(1):85–90

    Article  CAS  Google Scholar 

  • Johnson SM, Lim FL, Finkler A, Fromm H, Slabas AR, Knight MR (2014) Transcriptomic analysis of sorghum bicolor responding to combined heat and drought stress. BMC Genet 15(1):1–9

    Google Scholar 

  • Kicia M, Gola EM, Janska H (2010) Mitochondrial protease AtFtsH4 protects ageing Arabidopsis rosettes against oxidative damage under short-day photoperiod. Plant Signal Behav 5(2):126–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kihara A, Akiyama Y, Ito K (1997) Host regulation of lysogenic decision in bacteriophage λ: transmembrane modulation of FtsH (HflB), the cII degrading protease, by HflKC (HflA). PNAS 94(11):5544–5549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwasniak M, Pogorzelec L, Migdal I, Smakowska E, Janska H (2012) Proteolytic system of plant mitochondria. Physiol Plant 145(1):187–195

    Article  CAS  PubMed  Google Scholar 

  • Li D, Liu X, Shu L, Zhang H, Zhang S, Song Y, Zhang Z (2020) Global analysis of the AP2/ERF gene family in rose (Rosa chinensis) genome unveils the role of RcERF099 in Botrytis resistance. BMC Plant Biol 20(1):1–5

    Article  Google Scholar 

  • Li JB, Luan YS, Liu Z (2015) SpWRKY1 mediates resistance to Phytophthora infestans and tolerance to salt and drought stress by modulating reactive oxygen species homeostasis and expression of defense-related genes in tomato. PCTOC 123(1):67–81

    Article  CAS  Google Scholar 

  • Liang L, Chen M, Sun H, Shi Y, Sun B, Li H (2019) Study of the interaction between wheat FtsH2 and wheat yellow mosaic virus CP. Acta Phytophysiol Sin 49(6):799–807

    Google Scholar 

  • Liu B, Hong YB, Zhang YF, Li XH, Huang L, Zhang HJ, Li DY, Song FM (2014) Tomato WRKY transcriptional factor SlDRW1 is required for disease resistance against Botrytis cinerea and tolerance to oxidative stress. Plant Sci 227:145–156

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Lopes KL, Rodrigues RA, Silva MC, Braga WG, Silva-Filho MC (2018) The Zinc-finger thylakoid-membrane protein FIP is involved with abiotic stress response in Arabidopsis thaliana. Front Plant Sci 9:504

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo P, Li Z, Chen W, Xing W, Yang J, Cui Y (2020) Overexpression of RmICE1, a bHLH transcription factor from Rosa multiflora, enhances cold tolerance via modulating ROS levels and activating the expression of stress-responsive genes. EEB 178:104160

    CAS  Google Scholar 

  • Majsec K, Bhuiyan NH, Sun Q, Kumari S, Kumar V, Ware D, van Wijk KJ (2017) The plastid and mitochondrial peptidase network in Arabidopsis thaliana: a foundation for testing genetic interactions and functions in organellar proteostasis. Plant Cell 29(11):2687–2710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra LS, Funk C (2021) The FtsHi enzymes of Arabidopsis thaliana: pseudo-proteases with an Important function. Int J Mol Sci 22(11):5917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navabpour S, Morris K, Allen R, Harrison E, Mackerness AHS, Buchanan-Wollaston V (2003) Expression of senescence-enhanced genes in response to oxidative stress. J Exp Bot 54(391):2285–2292

    Article  CAS  PubMed  Google Scholar 

  • Ogura T, Wilkinson AJ (2001) AAA+ superfamily ATPases: common structure–diverse function. Genes Cells 6(7):575–597

    Article  CAS  PubMed  Google Scholar 

  • Pu T, Mo Z, Su L, Yang J, Wan K, Wang L, Liu R, Liu Y (2022) Genome-wide identification and expression analysis of the ftsH protein family and its response to abiotic stress in Nicotiana tabacum L. BMC Genom 23(1):1–5

    Article  Google Scholar 

  • Rigas S, Daras G, Laxa M, Marathias N, Fasseas C, Sweetlove LJ, Hatzopoulos P (2009) Role of Lon1 protease in post-germinative growth and maintenance of mitochondrial function in Arabidopsis thaliana. New Phytol 181(3):588–600

    Article  CAS  PubMed  Google Scholar 

  • Saidi A, Hajibarat Z (2019) Characterization of cis-elements in hormonal stress-responsive genes in Oryza sativa. Asia Pac J Mol Biol Biotechnol 27(1):95–102

    Google Scholar 

  • Saidi A, Hajibarat Z, Hajibarat Z (2020) Transcriptome analysis of Phytophthora infestans and Colletotrichum coccodes in tomato to reveal resistance mechanisms. Asia Pac J Mol Biol Biotechnol 28(1):39–51

    Google Scholar 

  • Saidi A, Hajibarat Z, Hajibarat Z (2021) Phylogeny, gene structure and GATA genes expression in different tissues of solanaceae species. Biocatal Agric Biotechnol 35:102015

    Article  CAS  Google Scholar 

  • Sakamoto W, Zaltsman A, Adam Z, Takahashi Y (2003) Coordinated regulation and complex formation of yellow variegated1 and yellow variegated2, chloroplastic FtsH metalloproteases involved in the repair cycle of photosystem II in Arabidopsis thylakoid membranes. Plant Cell 15(12):2843–2855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakuraba Y, Lee SH, Kim YS, Park OK, Hörtensteiner S, Paek NC (2014) Delayed degradation of chlorophylls and photosynthetic proteins in Arabidopsis autophagy mutants during stress-induced leaf yellowing. J Exp Bot 65(14):3915–3925

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Schölkopf B, Weigel D, Lohmann JU (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37(5):501–506

    Article  CAS  PubMed  Google Scholar 

  • Schumann W (1999) FtsH–a single-chain charonin? FEMS Microbiol Rev 23(1):1–1

    Article  CAS  PubMed  Google Scholar 

  • Sedaghatmehr M, Mueller-Roeber B, Balazadeh S (2016) The plastid metalloprotease FtsH6 and small heat shock protein HSP21 jointly regulate thermomemory in Arabidopsis. Nat Commun 7(1):1–4

    Article  Google Scholar 

  • Shin R, Park JM, An JM, Paek KH (2002) Ectopic expression of Tsi1 in transgenic hot pepper plants enhances host resistance to viral, bacterial, and oomycete pathogens. MPMI 15(10):983–989

    Article  CAS  PubMed  Google Scholar 

  • Sun AQ, Yi SY, Yang JY, Zhao CM, Liu J (2006) Identification and characterization of a heat-inducible ftsH gene from tomato (Lycopersicon esculentum Mill.). Plant Sci 170(3):551–562

    Article  CAS  Google Scholar 

  • Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M (2015) STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:D447-452

    Article  CAS  PubMed  Google Scholar 

  • Tülek A, Özdemir FI, Ramadhan SS (2020) Cloning, expression and characterization of membrane bound FtsH protease of Geobacillus kaustophilus. Appl Biochem Microbiol 56(6):678–684

    Article  Google Scholar 

  • Ülker B, Somssich IE (2004) WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol 7(5):491–498

    Article  PubMed  Google Scholar 

  • Wang F, Liu J, Chen M, Zhou L, Li Z, Zhao Q, Pan G, Zaidi SH, Cheng F (2016) Involvement of abscisic acid in PSII photodamage and D1 protein turnover for light-induced premature senescence of rice flag leaves. PLoS ONE 11(8):e0161203

    Article  PubMed  PubMed Central  Google Scholar 

  • William Roy S, Gilbert W (2006) The evolution of spliceosomal introns: patterns, puzzles and progress. Nat Rev Genet 7(3):211–221

    Article  CAS  Google Scholar 

  • Wu Q, Han T, Yang L, Wang Q, Zhao Y, Jiang D, Ruan X (2021) The essential roles of OsFtsH2 in developing the chloroplast of rice. BMC Plant Biol 21(1):1–4

    Article  Google Scholar 

  • Xiao JJ, Zhang RX, Khan A, Gai WX, Gong ZH (2021) CaFtsH06, a novel filamentous thermosensitive protease gene, is involved in heat, salt, and drought stress tolerance of pepper (Capsicum annuum L.). Int J Mol Sci 22(13):6953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing H, Jiang Y, Zou Y, Long X, Wu X, Ren Y, Li Y, Li HL (2021) Genome-wide investigation of the AP2/ERF gene family in ginger: evolution and expression profiling during development and abiotic stresses. BMC Plant Biol 21(1):1–21

    Article  Google Scholar 

  • Xue GP, Drenth J, McIntyre CL (2015) TaHsfA6f is a transcriptional activator that regulates a suite of heat stress protection genes in wheat (Triticum aestivum L.) including previously unknown Hsf targets. J Exp Bot 66(3):1025–1039

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Guo R, Gaffney K, Kim M, Muhammednazaar S, Tian W, Wang B, Liang J, Hong H (2018) Folding-degradation relationship of a membrane protein mediated by the universally conserved ATP-dependent protease FtsH. J Am Chem Soc 140(13):4656–4665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Sun J, Chen Y, Zhu P, Zhang L, Wu S, Ma D, Cao Q, Li Z, Xu T (2019) Genome-wide identification, structural and gene expression analysis of the bZIP transcription factor family in sweet potato wild relative Ipomoea trifida. BMC Genet 20(1):1–8

    Article  Google Scholar 

  • Yokotani N, Sato Y, Tanabe S, Chujo T, Shimizu T, Okada K, Yamane H, Shimono M, Sugano S, Takatsuji H, Kaku H (2013) WRKY76 is a rice transcriptional repressor playing opposite roles in blast disease resistance and cold stress tolerance. J Exp Bot 64(16):5085–5097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshioka-Nishimura M, Yamamoto Y (2014) Quality control of photosystem II: the molecular basis for the action of FtsH protease and the dynamics of the thylakoid membranes. J Photochem Photobiol B: Biol 137:100–106

    Article  CAS  Google Scholar 

  • Yu F, Park S, Rodermel SR (2004) The Arabidopsis FtsH metalloprotease gene family: interchangeability of subunits in chloroplast oligomeric complexes. Plant J 37(6):864–876

    Article  CAS  PubMed  Google Scholar 

  • Yue G, Hu X, He Y, Yang A, Zhang J (2010) Identification and characterization of two members of the FtsH gene family in maize (Zea mays L.). Mol Biol Rep 37(2):855–63

    Article  CAS  PubMed  Google Scholar 

  • Żelisko A, García-Lorenzo M, Jackowski G, Jansson S, Funk C (2005) AtFtsH6 is involved in the degradation of the light-harvesting complex II during high-light acclimation and senescence. PNAS 102(38):13699–13704

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Sun A (2009) Genome-wide comparative analysis of the metalloprotease ftsH gene families between Arabidopsis thaliana and rice. Shengwu Gongcheng Xuebao/chin J Biotechnol 25(9):1402–1408

    CAS  Google Scholar 

  • Zhang S, Wu J, Yuan D, Zhang D, Huang Z, Xiao L, Yang C (2014) Perturbation of auxin homeostasis caused by mitochondrial FtSH4 gene-mediated peroxidase accumulation regulates Arabidopsis architecture. Mol Plant 7(5):856–873

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Saidi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Vijay Pratap Singh.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajibarat, Z., Saidi, A. Filamentation Temperature-Sensitive (FtsH); Key Player in Response to Multiple Environmental Stress Conditions and Developmental Stages in Potato. J Plant Growth Regul 42, 4223–4239 (2023). https://doi.org/10.1007/s00344-022-10885-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-022-10885-x

Keywords

Navigation