Skip to main content
Log in

Expression of TaGF14b, a 14-3-3 adaptor protein gene from wheat, enhances drought and salt tolerance in transgenic tobacco

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

TaGF14b enhances tolerance to multiple stresses through ABA signaling pathway by altering physiological and biochemical processes, including ROS-scavenging system, stomatal closure, compatible osmolytes, and stress-related gene expressions in tobaccos.

The 14-3-3 proteins are involved in plant growth, development, and in responding to abiotic stresses. However, the precise functions of 14-3-3s in responding to drought and salt stresses remained unclear, especially in wheat. In this study, a 14-3-3 gene from wheat, designated TaGF14b, was cloned and characterized. TaGF14b was upregulated by polyethylene glycol 6000, sodium chloride, hydrogen peroxide, and abscisic acid (ABA) treatments. Ectopic expression of TaGF14b in tobacco conferred enhanced tolerance to drought and salt stresses. Transgenic tobaccos had longer root, better growth status, and higher relative water content, survival rate, photosynthetic rate, and water use efficiency than control plants under drought and salt stresses. The contribution of TaGF14b to drought and salt tolerance relies on the regulations of ABA biosynthesis and ABA signaling, as well as stomatal closure and stress-related gene expressions. Moreover, TaGF14b expression could significantly enhance the reactive oxygen species (ROS) scavenging system to ameliorate oxidative damage to cells. In addition, TaGF14b increased tolerance to osmotic stress evoked by drought and salinity through modifying water conservation and compatible osmolytes in plants. In conclusion, TaGF14b enhances tolerance to multiple abiotic stresses through the ABA signaling pathway in transgenic tobaccos by altering physiological and biochemical processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

ABF:

ABA-responsive element-binding transcription factor

CAT:

Catalase

DAB:

3,3′-Diaminobenzidine

DREB3:

Dehydration-responsive element-binding protein

DPI:

Diphenyleneiodonium

GFP:

Green fluorescent protein

LTP1:

Lipid transfer protein

MDA:

Malondialdehyde

NBT:

Nitroblue tetrazolium

NCED1:

9-cis-Epoxycarotenoid dioxygenase 1

OE:

Overexpression

P5CS:

Pyrroline-5-carboxylate synthetase

Pn:

Photosynthetic rate

POD:

Peroxidase

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

Tu:

Sodium tungstate

VC:

Vector control

WT:

Wild type

WUE:

Water use efficiency

References

  • Amara I, Odena A, Oliveira E, Moreno A, Masmoudi K, Pages M, Goday A (2012) Insights into maize LEA proteins: from proteomics to functional approaches. Plant Cell Physiol 53:312–329

    Article  PubMed  CAS  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Benzinger A, Popowicz GM, Joy JK, Majumdar S, Holak TA, Hermeking H (2005) The crystal structure of the non-liganded 14-3-3sigma protein: insights into determinants of isoform specific ligand binding and dimerization. Cell Res 15:219–227

    Article  PubMed  CAS  Google Scholar 

  • Campo S, Peris-Peris C, Montesinos L, Penas G, Messeguer J, San SB (2012) Expression of the maize ZmGF14-6 gene in rice confers tolerance to drought stress while enhancing susceptibility to pathogen infection. J Exp Bot 63:983–999

    Article  PubMed  CAS  Google Scholar 

  • Cao H, Xu Y, Yuan L, Bian Y, Wang L, Zhen S, Hu Y, Yan Y (2016) Molecular characterization of the 14-3-3 gene family in Brachypodium distachyon L. reveals high evolutionary conservation and diverse responses to abiotic stresses. Front Plant Sci 7:1099. https://doi.org/10.3389/fpls.2016.01099

    Article  PubMed  PubMed Central  Google Scholar 

  • Catala R, Lopez-Cobollo R, Mar CM, Angosto T, Alonso JM, Ecker JR, Salinas J (2014) The Arabidopsis 14-3-3 protein RARE COLD INDUCIBLE 1A links low-temperature response and ethylene biosynthesis to regulate freezing tolerance and cold acclimation. Plant Cell 26:3326–3342

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen S, Hajirezaei M, Bornke F (2005) Differential expression of sucrose-phosphate synthase isoenzymes in tobacco reflects their functional specialization during dark-governed starch mobilization in source leaves. Plant Physiol 139:1163–1174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen F, Li Q, Sun L, He Z (2006) The rice 14-3-3 gene family and its involvement in responses to biotic and abiotic stress. DNA Res 13:53–63

    Article  PubMed  CAS  Google Scholar 

  • Choulet F, Alberti A, Theil S et al (2014) Structural and functional partitioning of bread wheat chromosome 3B. Science 345:1249721

    Article  PubMed  CAS  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679

    Article  PubMed  CAS  Google Scholar 

  • Deng X, Hu W, Wei S, Zhou S, Zhang F, Han J, Chen L, Li Y, Feng J, Fang B, Luo Q, Li S, Liu Y, Yang G, He G (2013) TaCIPK29, a CBL-interacting protein kinase gene from wheat, confers salt stress tolerance in transgenic tobacco. PLoS ONE 8:e69881

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K (2011) ABA-mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res 124:509–525

    Article  PubMed  CAS  Google Scholar 

  • Gadjev I, Vanderauwera S, Gechev TS, Laloi C, Minkov IN, Shulaev V, Apel K, Inze D, Mittler R, Van Breusegem F (2006) Transcriptomic footprints disclose specificity of reactive oxygen species signaling in Arabidopsis. Plant Physiol 141:436–445

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Geilfus CM, Mithöfer A, Ludwig Müller J, Zörb C, Muehling KH (2015) Chloride-inducible transient apoplastic alkalinizations induce stomata closure by controlling abscisic acid distribution between leaf apoplast and guard cells in salt-stressed Vicia faba. New Phytol 208:803

    Article  PubMed  CAS  Google Scholar 

  • Goda H, Sasaki E, Akiyama K et al (2008) The AtGenExpress hormone and chemical treatment data set: experimental design, data evaluation, model data analysis and data access. Plant J 55:526–542

    Article  PubMed  CAS  Google Scholar 

  • Gong C, Cao S, Fan R, Wei B, Chen G, Wang X, Li Y, Zhang X (2013) Identification and phylogenetic analysis of a CC-NBS-LRR encoding gene assigned on chromosome 7B of wheat. Int J Mol Sci 14:15330–15347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Groppa MD, Benavides MP (2008) Polyamines and abiotic stress: recent advances. Amino Acids 34:35–45

    Article  PubMed  CAS  Google Scholar 

  • He Y, Wu J, Lv B, Li J, Gao Z, Xu W, Baluška F, Shi W, Shaw PC, Zhang J (2015) Involvement of 14-3-3 protein GRF9 in root growth and response under polyethylene glycol-induced water stress. J Exp Bot 66:2271–2281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • He Y, Zhang Y, Chen L, Wu C, Luo Q, Zhang F, Wei Q, Li K, Chang J, Yang G, He G (2017) A member of the 14-3-3 gene family in Brachypodium distachyon, BdGF14d, confers salt tolerance in transgenic tobacco plants. Front Plant Sci 8:340. https://doi.org/10.3389/fpls.2017.00340

    Article  PubMed  PubMed Central  Google Scholar 

  • Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol R 66:300

    Article  CAS  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1230

    Article  CAS  Google Scholar 

  • Hu X, Jiang M, Zhang J, Zhang A, Lin F, Tan M (2007) Calcium-calmodulin is required for abscisic acid-induced antioxidant defense and functions both upstream and downstream of H2O2 production in leaves of maize (Zea mays) plants. New Phytol 173:27–38

    Article  PubMed  CAS  Google Scholar 

  • Hu W, Huang C, Deng X, Zhou S, Chen L, Li Y, Wang C, Ma Z, Yuan Q, Wang Y, Cai R, Liang X, Yang G, He G (2013) TaASR1, a transcription factor gene in wheat, confers drought stress tolerance in transgenic tobacco. Plant Cell Environ 36:1449–1464

    Article  PubMed  CAS  Google Scholar 

  • Ikeda Y, Koizumi N, Kusano T, Sano H (2000) Specific binding of a 14-3-3 protein to autophosphorylated WPK4, an SNF1-related wheat protein kinase, and to WPK4-phosphorylated nitrate reductase. J Biol Chem 275:41528

    PubMed  CAS  Google Scholar 

  • Jia J, Zhao S, Kong X et al (2013) Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496:91–95

    Article  PubMed  CAS  Google Scholar 

  • Jiang M, Zhang J (2001) Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol 42:1265–1273

    Article  PubMed  CAS  Google Scholar 

  • Kishor PBK, Hong Z, Miao G, Hu CA, Verma DPS (1995) Overexpression of DELTA-1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee BH, Lee H, Xiong L, Zhu JK (2002) A mitochondrial complex I defect impairs cold-regulated nuclear gene expression. Plant Cell 14:1235–1251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li J, Besseau S, Toronen P, Sipari N, Kollist H, Holm L, Palva ET (2013a) Defense-related transcription factors WRKY70 and WRKY54 modulate osmotic stress tolerance by regulating stomatal aperture in Arabidopsis. New Phytol 200:457–472

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li J, Song S, Zhao Y, Guo W, Guo G, Peng H, Ni Z, Sun Q, Yao Y (2013b) Wheat 14-3-3 protein conferring growth retardation in Arabidopsis. J Integr Agric 12:209–217

    Article  Google Scholar 

  • Liu Y, Wang L, Xing X, Sun L, Pan J, Kong X, Zhang M, Li D (2013) ZmLEA3, a multifunctional group 3 LEA protein from maize (Zea mays L.), is involved in biotic and abiotic stresses. Plant Cell Physiol 54:944–959

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Zhang S, Liu B (2016) 14-3-3 proteins: macro-regulators with great potential for improving abiotic stress tolerance in plants. Biochem Bioph Res Commun 477:9–13

    Article  CAS  Google Scholar 

  • Liu Z, Jia Y, Ding Y, Shi Y, Li Z, Guo Y, Gong Z, Yang S (2017) Plasma membrane CRPK1-mediated phosphorylation of 14-3-3 proteins induces their nuclear import to fine-tune CBF signaling during cold response. Mol Cell 66:117–128

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Manuel Ruiz-Lozano J, Porcel R, Azcon C, Aroca R (2012) Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J Exp Bot 63:4033–4044

    Article  CAS  Google Scholar 

  • Meng X, Chen X, Wang Y, Xiao R, Liu H, Wang X, Ren J, Li Y, Niu H, Wang X, Yin J (2014) Characterization and subcellular localization of two 14-3-3 genes and their response to abiotic stress in wheat. Sheng Wu Gong Cheng Xue Bao 30:232–246

    PubMed  CAS  Google Scholar 

  • Mizuno T, Yamashino T (2008) Comparative transcriptome of diurnally oscillating genes and hormone-responsive genes in Arabidopsis thaliana: insight into circadian clock-controlled daily responses to common ambient stresses in plants. Plant Cell Physiol 49:481–487

    Article  PubMed  CAS  Google Scholar 

  • Moore K, Roberts LJ (1998) Measurement of lipid peroxidation. Free Radic Res 28:659–671

    Article  PubMed  CAS  Google Scholar 

  • Msanne J, Lin J, Stone JM, Awada T (2011) Characterization of abiotic stress-responsive Arabidopsis thaliana RD29A and RD29B genes and evaluation of transgenes. Planta 234:97–107

    Article  PubMed  CAS  Google Scholar 

  • Paul AL, Denison FC, Schultz ER, Zupanska AK, Ferl RJ (2012) 14-3-3 phosphoprotein interaction networks-does isoform diversity present functional interaction specification? Front Plant Sci 3:190. https://doi.org/10.3389/fpls.2012.00190

    Article  PubMed  PubMed Central  Google Scholar 

  • Qin C, Cheng L, Shen J, Zhang Y, Cao H, Lu D, Shen C (2016) Genome-wide identification and expression analysis of the 14-3-3 family genes in Medicago truncatula. Front Plant Sci 7:320. https://doi.org/10.3389/fpls.2016.00320

    Article  PubMed  PubMed Central  Google Scholar 

  • Quiapim AC, Brito MS, Bernardes LAS, DaSilva I, Malavazi I, DePaoli HC, Molfetta-Machado JB, Giuliatti S, Goldman GH, Goldman MHS (2009) Analysis of the Nicotiana tabacum stigma/style transcriptome reveals gene expression differences between wet and dry stigma species. Plant Physiol 149:1211–1230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raghavendra AS, Gonugunta VK, Christmann A, Grill E (2010) ABA perception and signalling. Trends Plant Sci 15:395–401

    Article  PubMed  CAS  Google Scholar 

  • Riganti C, Gazzano E, Polimeni M, Costamagna C, Bosia A, Ghigo D (2004) Diphenyleneiodonium inhibits the cell redox metabolism and induces oxidative stress. J Biol Chem 279:47726–47731

    Article  PubMed  CAS  Google Scholar 

  • Schoonheim PJ, Costa Pereira DD, De Boer AH (2009) Dual role for 14-3-3 proteins and ABF transcription factors in gibberellic acid and abscisic acid signalling in barley (Hordeum vulgare) aleurone cells. Plant Cell Environ 32:439–447

    Article  PubMed  CAS  Google Scholar 

  • Schroeder JI, Allen GJ, Hugouvieux V, Kwak JM, Waner D (2001) Guard cell signal transduction. Annu Rev Plant Physiol Plant Mol Biol 52:627–658

    Article  PubMed  CAS  Google Scholar 

  • Seki M, Umezawa T, Urano K, Shinozaki K (2007) Regulatory metabolic networks in drought stress responses. Curr Opin Plant Biol 10:296–302

    Article  PubMed  CAS  Google Scholar 

  • Sharma S, Verslues PE (2010) Mechanisms independent of abscisic acid (ABA) or proline feedback have a predominant role in transcriptional regulation of proline metabolism during low water potential and stress recovery. Plant Cell Environ 33:1838–1851

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Luo X, Sun M, Chen C, Ding X, Wang X, Yang S, Yu Q, Jia B, Ji W, Cai H, Zhu Y (2014) A Glycine soja 14-3-3 protein GsGF14o participates in stomatal and root hair development and drought tolerance in Arabidopsis thaliana. Plant Cell Physiol 55:99–118

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Sun M, Jia B, Chen C, Qin Z, Yang K, Shen Y, Meiping Z, Mingyang C, Zhu Y (2015) A 14-3-3 family protein from wild soybean (Glycine Soja) regulates ABA sensitivity in Arabidopsis. PLoS One 10:e0146163. https://doi.org/10.1371/journal.pone.0146163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takahashi Y, Kinoshita T, Shimazaki K (2007) Protein phosphorylation and binding of a 14-3-3 protein in Vicia guard cells in response to ABA. Plant Cell Physiol 48:1182–1191

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tan T, Cai J, Zhan E, Yang Y, Zhao J, Guo Y, Zhou H (2016) Stability and localization of 14-3-3 proteins are involved in salt tolerance in Arabidopsis. Plant Mol Biol 92:391–400

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang C, Ma Q, Lin Z, He P, Liu J (2009) Cloning and characterization of a cDNA encoding 14-3-3 protein with leaf and stem-specific expression from wheat. DNA Seq 19:130–136

    Article  CAS  Google Scholar 

  • Wang Z, Wei P, Wu M, Xu Y, Li F, Luo Z, Zhang J, Chen A, Xie X, Cao P, Lin F, Yang J (2015) Analysis of the sucrose synthase gene family in tobacco: structure, phylogeny, and expression patterns. Planta 242:153–166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang X, Wang Y, Xiao R, Chen X, Ren J (2016) Molecular characterization and expression analysis of three homoeologous Ta14S genes encoding 14-3-3 proteins in wheat (Triticum aestivum L.). Crop J 4:188–198

    Article  Google Scholar 

  • Wang C, Lu G, Hao Y, Guo H, Guo Y, Zhao J, Cheng H (2017) ABP9, a maize bZIP transcription factor, enhances tolerance to salt and drought in transgenic cotton. Planta 246:453–469

    Article  PubMed  CAS  Google Scholar 

  • Wei Q, Luo Q, Wang R, Zhang F, He Y, Zhang Y, Qiu D, Li K, Chang J, Yang G, He G (2017) A wheat R2R3-type MYB transcription factor TaODORANT1 positively regulates drought and salt stress responses in transgenic tobacco plants. Front Plant Sci 8:1374. https://doi.org/10.3389/fpls.2017.01374

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan J, He C, Wang J, Mao Z, Holaday SA, Allen RD, Zhang H (2004) Overexpression of the Arabidopsis 14-3-3 protein GF14 lambda in cotton leads to a “stay-green” phenotype and improves stress tolerance under moderate drought conditions. Plant Cell Physiol 45:1007–1014

    Article  PubMed  CAS  Google Scholar 

  • Yan H, Jia H, Chen X, Hao L, An H, Guo X (2014) The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgenic Nicotiana benthamiana through ABA signaling and the modulation of reactive oxygen species production. Plant Cell Physiol 55:2060–2076

    Article  PubMed  CAS  Google Scholar 

  • Yang L, You J, Wang Y, Li J, Quan W, Yin M, Wang Q, Chan Z (2017) Systematic analysis of the G-box Factor 14-3-3 gene family and functional characterization of GF14a in Brachypodium distachyon. Plant Physiol Biochem 117:1–11

    Article  PubMed  CAS  Google Scholar 

  • Yashvardhini N, Bhattacharya S, Chaudhuri S, Sengupta DN (2018) Molecular characterization of the 14-3-3 gene family in rice and its expression studies under abiotic stress. Planta 247:229–253

    Article  PubMed  CAS  Google Scholar 

  • Zeng D, Luo J, Li Z, Chen G, Zhang L, Ning S, Yuan Z, Zheng Y, Hao M, Liu D (2016) High transferability of homoeolog-specific markers between bread wheat and newly synthesized hexaploid wheat lines. PLoS One 11:e162847

    Google Scholar 

  • Zhou S, Hu W, Deng X, Ma Z, Chen L, Huang C, Wang C, Wang J, He Y, Yang G, He G (2012) Overexpression of the wheat aquaporin gene, TaAQP7, enhances drought tolerance in transgenic tobacco. PLoS ONE 7:e52439

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou H, Lin H, Chen S, Becker K, Yang Y, Zhao J, Kudla J, Schumaker KS, Guo Y (2014) Inhibition of the Arabidopsis salt overly sensitive pathway by 14-3-3 proteins. Plant Cell 26:1166–1182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by National Genetically Modified New Varieties of Major Projects of China (2016ZX08010004-004), the National Natural Science Foundation of China (Nos. 31771418, 31570261), and Key Project of Hubei Province (2017AHB041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangyuan He.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Subcellular localization of TaGF14b. The control pBI121-GFP (a) and recombined pBI121-TaGF14b-GFP (b) vectors were transiently expressed in onion epidermal cells and observed with fluorescence microscope, respectively (TIFF 14002 kb)

Supplementary material 2 (DOCX 21 kb)

Supplementary material 3 (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhao, H., Zhou, S. et al. Expression of TaGF14b, a 14-3-3 adaptor protein gene from wheat, enhances drought and salt tolerance in transgenic tobacco. Planta 248, 117–137 (2018). https://doi.org/10.1007/s00425-018-2887-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-018-2887-9

Keywords

Navigation