Skip to main content
Log in

Multi-Walled Carbon Nanotubes Influence on Gas Exchange, Redox Reaction and Antioxidant System in Zea mays Exposed to Excessive Copper

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The carbon nanotube is one of the most encouraging tools in nanotechnology. However, the extent and interaction with different plant systems of multi-wall carbon nanotubes (MWCNT) are not fully understood under stress conditions. The present study aimed to evaluate the potential of MWCNT to improve tolerance to copper toxicity in maize (Zea mays). For this purpose, Zea mays was grown under exposure to exogenously applied MWCNT concentrations (50-100-250 mg L−1), individually or combined, with 50 μM copper (Cu stress) for 7 days. MWCNTs eliminated the adverse effects caused by stress on water status, gas parameters and osmotic potential state. Although stress activated the antioxidant system, reactive oxygen species (ROS) accumulation (hydrogen peroxide (H2O2) content) and lipid peroxidation (TBARS) increased because stress-applied maize was unable to perform an effective scavenging action. MWCNT applications had a strong ROS scavenging effect on maize seedlings. Under Cu stress, there were different responses on antioxidant capacity depending on MWCNT concentrations called the hormesis effect. Under stress, M50-M100 (50 and 100 mg L−1) reversed the radical accumulation by providing increased superoxide dismutase (SOD), glutathione peroxidase (GPX) and the regeneration of ascorbate (AsA) and glutathione (GSH). The MWCNT-activated enzyme system maintained the low levels of H2O2 and TBARS contents against stress. However, after the highest MWCNT concentration (250 mg L−1) plus stress exposure, this trend could not be continued, as by represented the disrupted antioxidant capacity and the reduced AsA/DHA and GSH redox state in maize seedlings. Therefore, the levels of H2O2 and TBARS were similar to the stress ones. Our findings indicated that MWCNT provided a new potential tool against Cu stress to improve the stress tolerance mechanism in maize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bahgat J, Ingole B, Singh N (2016) Glutathion-S-transferase, catalase, superoxide dismutase, glutathione peroxidase and lipid peroxidation as biomarker of oxidative stress in snails: a review. Invertebr Surviv J 13:336–349

    Google Scholar 

  • Bai X, Ng KKH, Hu JJ, Ye S, Yang D (2019) Small-molecule-based fluorescent sensors for selective detection of reactive oxygen species in biological systems. Annu Rev Biochem 88:605–633

    Article  CAS  PubMed  Google Scholar 

  • Bates L, Waldren R, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44(1):276–287

    Article  CAS  PubMed  Google Scholar 

  • Begum P, Ikhtiari R, Fugetsu B (2011) Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. Carbon 49(12):3907–3919

    Article  CAS  Google Scholar 

  • Bergmeyer HU (1970) Methoden der enzymatischen Analyse, 2. Verlag Chemie, Weinheim

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekhar C, Ray JG (2017) Copper accumulation, localization and antioxidant response in Eclipta alba L. in relation to quantitative variation of the metal in soil. Acta Physiologiae Plantarum 39(9):1–14

    Article  CAS  Google Scholar 

  • Chang P, Yang F, Xie Q, Li T, Dong J (2020) 2D porous carbon nanosheet from sulfonated pitch-based graphene quantum dots for high volumetric performance EDLCs. J Power Sources 479:228825

    Article  CAS  Google Scholar 

  • Chatterjee J, Chatterjee C (2000) Phytotoxicity of cobalt, chromium and copper in cauliflower. Environ Pollut 109(1):69–74

    Article  CAS  PubMed  Google Scholar 

  • Cheeseman JM (2006) Hydrogen peroxide concentrations in leaves under natural conditions. J Exp Bot 57(10):2435–2444

    Article  CAS  PubMed  Google Scholar 

  • Chekin F, Bagheri S, Arof AK, Abd Hamid SB (2012) Preparation and characterization of Ni (II)/polyacrylonitrile and carbon nanotube composite modified electrode and application for carbohydrates electrocatalytic oxidation. J Solid State Electrochem 16(10):3245–3251

    Article  CAS  Google Scholar 

  • Chen J, Shafi M, Li S, Wang Y, Wu J, Ye Z, Peng D, Yan W, Liu D (2015) Copper induced oxidative stresses, antioxidant responses and phytoremediation potential of Moso bamboo (Phyllostachys pubescens). Sci Rep 5(1):1–9

    Google Scholar 

  • Choudhary SP, Oral HV, Bhardwaj R, Yu JQ, Tran LSP (2012) Interaction of brassinosteroids and polyamines enhances copper stress tolerance in Raphanus sativus. J Exp Bot 63(15):5659–5675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalton DA, Russell SA, Hanus FJ, Pascoe GA, Evans HJ (1986) Enzymatic-reactions of ascorbate and glutathione that prevent peroxide damage in soybean root-nodules. P Natl Acad Sci USA 83(11):3811–3815

    Article  CAS  Google Scholar 

  • Drążkiewicz M, Skórzyńska-Polit E, Krupa Z (2004) Copper-induced oxidative stress and antioxidant defence in Arabidopsis thaliana. Biometals 17(4):379–387

    Article  PubMed  Google Scholar 

  • Dresselhaus MS, Dresselhaus G, Eklund P, Rao A (2000) Carbon nanotubes. In: Andreoni Wanda (ed) The physics of fullerene-based and fullerene-related materials. Springer, Dordrecht, pp 331–379

    Chapter  Google Scholar 

  • Dutilleul C, Driscoll S, Cornic G, De Paepe R, Foyer CH, Noctor G (2003) Functional mitochondrial complex I is required by tobacco leaves for optimal photosynthetic performance in photorespiratory conditions and during transients. Plant Physiol 131(1):264–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elia AC, Galarini R, Taticchi MI, Dörr AJM, Mantilacci L (2003) Antioxidant responses and bioaccumulation in Ictalurus melas under mercury exposure. Ecotox Environ Safe 55(2):162–167

    Article  CAS  Google Scholar 

  • Fatima RA, Ahmad M (2005) Certain antioxidant enzymes of Allium cepa as biomarkers for the detection of toxic heavy metals in wastewater. Sci Total Environ 346(1–3):256–273

    Article  CAS  PubMed  Google Scholar 

  • Feigl G, Kumar D, Lehotai N, Tugyi N, Molnár Á, Ördög A, Szepesi Á, Gémes K, Laskay G, Erdei L (2013) Physiological and morphological responses of the root system of Indian mustard (Brassica juncea L. Czern.) and rapeseed (Brassica napus L.) to copper stress. Ecotoxicol Environ Saf 94:179–189

    Article  CAS  PubMed  Google Scholar 

  • Fotopoulos V, Ziogas V, Tanou G, Molassiotis A (2010) Involvement of AsA/DHA and GSH/GSSG ratios in gene and protein expression and in the activation of defence mechanisms under abiotic stress conditions. In: Anjum Naser A, Chan Ming-Tsair, Umar Shahid (eds) Ascorbate-Glutathione Pathway and Stress Tolerance in Plants. Springer, Dordrecht, pp 265–302

    Chapter  Google Scholar 

  • Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133(1):21–25

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155(1):2–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Sanchez S, Bernales I, Cristobal S (2015) Early response to nanoparticles in the Arabidopsis transcriptome compromises plant defence and root-hair development through salicylic acid signalling. Bmc Genomics 16:341

    Article  PubMed  PubMed Central  Google Scholar 

  • Gautam S, Anjani K, Srivastava N (2016) In vitro evaluation of excess copper affecting seedlings and their biochemical characteristics in Carthamus tinctorius L. (variety PBNS-12). Physiol Mol Biol Plants 22(1):121–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghasempour M, Iranbakhsh A, Ebadi M, Ardebili ZO (2019) Multi-walled carbon nanotubes improved growth, anatomy, physiology, secondary metabolism, and callus performance in Catharanthus roseus: an in vitro study. 3 Biotech 9(11):1–10

    Article  Google Scholar 

  • Ghorbanpour M, Hadian J (2015) Multi-walled carbon nanotubes stimulate callus induction, secondary metabolites biosynthesis and antioxidant capacity in medicinal plant Satureja khuzestanica grown in vitro. Carbon 94:749–759

    Article  CAS  Google Scholar 

  • Ghosh M, Bhadra S, Adegoke A, Bandyopadhyay M, Mukherjee A (2015) MWCNT uptake in Allium cepa root cells induces cytotoxic and genotoxic responses and results in DNA hyper-methylation. Mutat Res Fundam Mol Mech Mutagen 774:49–58

    Article  CAS  Google Scholar 

  • Gomes MdMdA, Lagôa AMMA, Medina CL, Machado EC, Machado MA (2004) Interactions between leaf water potential, stomatal conductance and abscisic acid content of orange trees submitted to drought stress. Braz J Plant Physiol 16(3):155–161

    Article  Google Scholar 

  • Gong X, Huang D, Liu Y, Zeng G, Wang R, Xu P, Zhang C, Cheng M, Xue W, Chen S (2019) Roles of multiwall carbon nanotubes in phytoremediation: cadmium uptake and oxidative burst in Boehmeria nivea (L.) Gaudich. Environmental Science: Nano 6(3):851–862

    CAS  Google Scholar 

  • Halušková Lu, Valentovičová K, Huttová J, Mistrík I, Tamás L (2009) Effect of abiotic stresses on glutathione peroxidase and glutathione S-transferase activity in barley root tips. Plant Physiol Biochem 47(11–12):1069–1074

    Article  PubMed  Google Scholar 

  • Hasanuzzaman M, Bhuyan M, Zulfiqar F, Raza A, Mohsin SM, Mahmud JA, Fujita M, Fotopoulos V (2020) Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants 9(8):681

    Article  CAS  PubMed Central  Google Scholar 

  • Hatami M, Hadian J, Ghorbanpour M (2017) Mechanisms underlying toxicity and stimulatory role of single-walled carbon nanotubes in Hyoscyamus niger during drought stress simulated by polyethylene glycol. J Hazard Mater 324:306–320

    Article  CAS  PubMed  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7(11):1456–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herzog V, Fahimi H (1973) Determination of the activity of peroxidase. Anal Biochem 55(554):e62

    Google Scholar 

  • Hossain M, Hossain M, Fujita M (2006) Induction of pumpkin glutathione S-transferases by different stresses and its possible mechanisms. Biol Plantarum 50(2):210–218

    Article  CAS  Google Scholar 

  • Hossain MA, Piyatida P, da Silva JAT, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot. https://doi.org/10.1155/2012/872875

    Article  Google Scholar 

  • Hou WC, Liang HJ, Wang CC, Liu DZ (2004) Detection of glutathione reductase after electrophoresis on native or sodium dodecyl sulfate polyacrylamide gels. Electrophoresis 25(17):2926–2931

    Article  CAS  PubMed  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    Article  CAS  Google Scholar 

  • Irin F, Shrestha B, Cañas JE, Saed MA, Green MJ (2012) Detection of carbon nanotubes in biological samples through microwave-induced heating. Carbon 50(12):4441–4449

    Article  CAS  Google Scholar 

  • Izad AI, Ibrahim MH, Abdullah CAC, Zain NAM (2018) Growth, leaf gas exchange and secondary metabolites of Orthosiphon stamineus as affected by multiwall carbon nanotubes application. Annu Res Rev Biol 23:1–13

    Article  Google Scholar 

  • Jiang M, Zhang J (2002) Involvement of plasma-membrane NADPH oxidase in abscisic acid- and water stress-induced antioxidant defense in leaves of maize seedlings. Planta 215(6):1022–1030

    Article  CAS  PubMed  Google Scholar 

  • Jordan JT, Oates R, Subbiah S, Payton PR, Singh KP, Shah SA, Green MJ, Klein DM, Cañas-Carrell JE (2020) Carbon nanotubes affect early growth, flowering time and phytohormones in tomato. Chemosphere 256:127042

    Article  CAS  PubMed  Google Scholar 

  • Karami A, Sepehri A (2018) Beneficial role of MWCNTs and SNP on growth, physiological and photosynthesis performance of barley under NaCl stress. J Soil Sci Plant Nutr 18(3):752–771

    CAS  Google Scholar 

  • Kaur P, Shin MS, Joshi A, Kaur N, Sharma N, Park JS, Sekhon S (2013) Interactions between multiwall carbon nanotubes and poly (diallyl dimethylammonium) chloride: effect of the presence of a surfactant. J Phys Chem B 117(11):3161–3166

    Article  CAS  PubMed  Google Scholar 

  • Khodakovskaya MV, de Silva K, Nedosekin DA, Dervishi E, Biris AS, Shashkov EV, Galanzha EI, Zharov VP (2011) Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proc Natl Acad Sci 108(3):1028–1033

    Article  CAS  PubMed  Google Scholar 

  • Khodakovskaya MV, De Silva K, Biris AS, Dervishi E, Villagarcia H (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6(3):2128–2135

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Liné C, Manent F, Wolinski A, Flahaut E, Larue C (2021) Comparative study of response of four crop species exposed to carbon nanotube contamination in soil. Chemosphere 274:129854

    Article  PubMed  Google Scholar 

  • Liu B, Li X, Li B, Xu B, Zhao Y (2009) Carbon nanotube based artificial water channel protein: membrane perturbation and water transportation. Nano Lett 9(4):1386–1394

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Zhang H, Sun L, Jiao Y, Zhang G, Miao C, Hao F (2011) NADPH oxidase AtrbohD and AtrbohF function in ROS-dependent regulation of Na+/K+ homeostasis in Arabidopsis under salt stress. J Exp Bot 63(1):305–317

    Article  PubMed  Google Scholar 

  • Ma C, White JC, Zhao J, Zhao Q, Xing B (2018) Uptake of engineered nanoparticles by food crops: characterization, mechanisms, and implications. Annu Rev Food Sci Technol 9:129–153

    Article  CAS  PubMed  Google Scholar 

  • Marslin G, Sheeba CJ, Franklin G (2017) Nanoparticles alter secondary metabolism in plants via ROS burst. Front Plant Sci 8:832

    Article  PubMed  PubMed Central  Google Scholar 

  • Martínez Ballesta MC, Zapata L, Chalbi N, Carvajal M (2016) Multiwalled carbon nanotubes enter broccoli cells enhancing growth and water uptake of plants exposed to salinity. Journal of Nanobiotechnology 14(1):1–14

    Article  Google Scholar 

  • Matos MP, Correia AAS, Rasteiro MG (2017) Application of carbon nanotubes to immobilize heavy metals in contaminated soils. J Nanopart Res 19(4):126

    Article  Google Scholar 

  • Mishra S, Keswani C, Abhilash P, Fraceto LF, Singh HB (2017) Integrated approach of agri-nanotechnology: challenges and future trends. Front Plant Sci 8:471

    Article  PubMed  PubMed Central  Google Scholar 

  • Mittler R, Zilinskas BA (1993) Detection of ascorbate peroxidase-activity in native gels by inhibition of the ascorbate-dependent reduction of nitroblue tetrazolium. Anal Biochem 212(2):540–546

    Article  CAS  PubMed  Google Scholar 

  • Miyake C, Asada K (1992) Thylakoid-bound ascorbate peroxidase in spinach-chloroplasts and photoreduction of Its primary oxidation-product monodehydroascorbate radicals in thylakoids. Plant Cell Physiol 33(5):541–553

    CAS  Google Scholar 

  • Mohamed FM, Li Z, Zayed AM (2020) Carbon nanotube impregnated anthracite (An/CNT) as a superior sorbent for azo dye removal. RSC Adv 10(43):25586–25601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montanheiro T, Cristóvan F, Machado J, Tada D, Durán N, Lemes A (2015) Effect of MWCNT functionalization on thermal and electrical properties of PHBV/MWCNT nanocomposites. J Mater Res 30(1):55–65

    Article  CAS  Google Scholar 

  • Moravcová Š, Tůma J, Dučaiová ZK, Waligórski P, Kula M, Saja D, Słomka A, Bąba W, Libik-Konieczny M (2018) Influence of salicylic acid pretreatment on seeds germination and some defence mechanisms of Zea mays plants under copper stress. Plant Physiol Biochem 122:19–30

    Article  PubMed  Google Scholar 

  • Moreira H, Marques AP, Franco AR, Rangel AO, Castro PM (2014) Phytomanagement of Cd-contaminated soils using maize (Zea mays L.) assisted by plant growth-promoting rhizobacteria. Environ Sci Pollut R 21(16):9742–9753

    Article  CAS  Google Scholar 

  • Mostofa MG, Seraj ZI, Fujita M (2015) Interactive effects of nitric oxide and glutathione in mitigating copper toxicity of rice (Oryza sativa L.) seedlings. Plant Signal Behav 10(3):e991570

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22(5):867–880

    CAS  Google Scholar 

  • Ogbaga CC, Miller MA, Johnson GN (2017) Fourier transform infrared spectroscopic analysis of maize (Zea mays) subjected to progressive drought reveals involvement of lipids, amides and carbohydrates. Afr J Biotech 16(18):1061–1066

    Article  CAS  Google Scholar 

  • Oloumi H, Mousavi EA, Nejad RM (2018) Multi-wall carbon nanotubes effects on plant seedlings growth and cadmium/lead uptake in vitro. Russ J Plant Physiol 65(2):260–268

    Article  CAS  Google Scholar 

  • Paradiso A, Berardino R, de Pinto MC, Sanita di Toppi L, Storelli MM, Tommasi F, De Gara L (2008) Increase in ascorbate-glutathione metabolism as local and precocious systemic responses induced by cadmium in durum wheat plants. Plant Cell Physiol 49(3):362–374

    Article  CAS  PubMed  Google Scholar 

  • Peng H, Wang-Müller Q, Witt T, Malaisse F, Küpper H (2012) Differences in copper accumulation and copper stress between eight populations of Haumaniastrum katangense. Environ Exp Bot 79:58–65

    Article  CAS  Google Scholar 

  • Posmyk M, Kontek R, Janas K (2009) Antioxidant enzymes activity and phenolic compounds content in red cabbage seedlings exposed to copper stress. Ecotoxicol Environ Saf 72(2):596–602

    Article  CAS  PubMed  Google Scholar 

  • Rahmani N, Radjabian T, Soltani BM (2020) Impacts of foliar exposure to multi-walled carbon nanotubes on physiological and molecular traits of Salvia verticillata L., as a medicinal plant. Plant Physiol Bioch 150:27–38

    Article  CAS  Google Scholar 

  • Rao KM, Sresty T (2000) Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Sci 157(1):113–128

    Article  Google Scholar 

  • Ricci G, Bello ML, Caccuri AM, Galiazzo F, Federici G (1984) Detection of glutathione transferase activity on polyacrylamide gels. Anal Biochem 143(2):226–230

    Article  CAS  PubMed  Google Scholar 

  • Rombel Bryzek A, Rajfur M, Zhuk O (2017) The impact of copper ions on oxidative stress in garden cress Lepidium sativum. Ecol Chem Eng S 24(4):627–636

    CAS  Google Scholar 

  • Rucińska-Sobkowiak R (2016) Water relations in plants subjected to heavy metal stresses. Acta Physiol Plant 38(11):1–13

    Article  Google Scholar 

  • Safiuddin M, Gonzalez M, Cao J, Tighe SL (2014) State-of-the-art report on use of nano-materials in concrete. Int J Pavement Eng 15(10):940–949

    Article  CAS  Google Scholar 

  • Sagi M, Fluhr R (2001) Superoxide production by plant homologues of the gp91phox NADPH oxidase. Modulation of activity by calcium and by tobacco mosaic virus infection. Plant Physiol 126(3):1281–1290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samadi S, Saharkhiz MJ, Azizi M, Samiei L, Ghorbanpour M (2020) Multi-walled carbon nanotubes stimulate growth, redox reactions and biosynthesis of antioxidant metabolites in Thymus daenensis celak. in vitro. Chemosphere 249:126069

    Article  CAS  PubMed  Google Scholar 

  • Seevers P, Daly J, Catedral F (1971) The role of peroxidase isozymes in resistance to wheat stem rust disease. Plant Physiol 48(3):353–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharifi P, Bidabadi SS, Zaid A, Latef AAHA (2021) Efficacy of multi-walled carbon nanotubes in regulating growth performance, total glutathione and redox state of Calendula officinalis L cultivated on Pb and Cd polluted soil. Ecotoxicol Environ Saf 213:112051

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Ye T, Chan Z (2013) Exogenous application of hydrogen sulfide donor sodium hydrosulfide enhanced multiple abiotic stress tolerance in bermudagrass (Cynodon dactylon (L). Pers.). Plant Physiol Bioch 71:226–234

    Article  CAS  Google Scholar 

  • Singh S, Eapen S, D’souza S (2006) Cadmium accumulation and its influence on lipid peroxidation and antioxidative system in an aquatic plant, Bacopa Monnieri L. Chemosphere 62(2):233–246

    Article  CAS  PubMed  Google Scholar 

  • Smart RE, Bingham GE (1974) Rapid estimates of relative water content. Plant Physiol 53(2):258–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subagio A, Prihastanti E, Ngadiwiyana N (2020) Application of functionalized multi-walled carbon nanotubes for growth enhancement of mustard seed germination. Indones J Chem 20(1):120–129

    Article  CAS  Google Scholar 

  • Tan X-m, Lin C, Fugetsu B (2009) Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells. Carbon 47(15):3479–3487

    Article  CAS  Google Scholar 

  • Teisseire H, Guy V (2000) Copper-induced changes in antioxidant enzymes activities in fronds of duckweed (Lemna minor). Plant Sci 153(1):65–72

    Article  CAS  Google Scholar 

  • Thounaojam TC, Panda P, Mazumdar P, Kumar D, Sharma GD, Sahoo L, Sanjib P (2012) Excess copper induced oxidative stress and response of antioxidants in rice. Plant Physiol Biochem 53:33–39

    Article  CAS  PubMed  Google Scholar 

  • Tiwari D, Dasgupta-Schubert N, Cendejas LV, Villegas J, Montoya LC, García SB (2014) Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Appl Nanosci 4(5):577–591

    Article  CAS  Google Scholar 

  • Tripathi S, Sonkar SK, Sarkar S (2011) Growth stimulation of gram (Cicer arietinum) plant by water soluble carbon nanotubes. Nanoscale 3(3):1176–1181

    Article  CAS  PubMed  Google Scholar 

  • Vithanage M, Seneviratne M, Ahmad M, Sarkar B, Ok YS (2017) Contrasting effects of engineered carbon nanotubes on plants: a review. Environ Geochem Health 39(6):1421–1439

    Article  CAS  PubMed  Google Scholar 

  • Wang YJ, Wei XY, Jing XQ, Chang YL, Hu CH, Wang X, Chen KM (2016) The fundamental role of NOX family proteins in plant immunity and their regulation. Int J Mol Sci 17(6):805

    Article  PubMed Central  Google Scholar 

  • Woodbury W, Spencer A, Stahmann M (1971) An improved procedure using ferricyanide for detecting catalase isozymes. Anal Biochem 44(1):301–305

    Article  CAS  PubMed  Google Scholar 

  • Yetişsin F, Kurt F (2020) Gallic acid (GA) alleviating copper (Cu) toxicity in maize (Zea mays L) seedlings. Int J Phytoremediation 22(4):420–426

    Article  PubMed  Google Scholar 

  • Younes N, Dawood MF, Wardany A (2019) Biosafety assessment of graphene nanosheets on leaf ultrastructure, physiological and yield traits of Capsicum annuum L. and Solanum melongena L. Chemosphere 228:318–327

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Selcuk University Scientific Research Projects Coordinating Office (Grant Number: 19401160).

Author information

Authors and Affiliations

Authors

Contributions

COK and EY led the study design, statistical analyses and paper review and editing. FNA, EY and COK helped to perform the paper writing. EY, MO and COK all contributed to the study design and development of the study protocol. EY, COK, BA, FE, MK and FNA contributed to the data collection. All authors reviewed, edited the article. All authors declare that they have no conflict of interest.

Corresponding author

Correspondence to Evren Yildiztugay.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Handling Editor: Vijay Pratap Singh.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (doc 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alp, F.N., Ozfidan-Konakci, C., Yildiztugay, E. et al. Multi-Walled Carbon Nanotubes Influence on Gas Exchange, Redox Reaction and Antioxidant System in Zea mays Exposed to Excessive Copper. J Plant Growth Regul 41, 3169–3184 (2022). https://doi.org/10.1007/s00344-021-10503-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-021-10503-2

Keywords

Navigation