Skip to main content
Log in

Co-expression of PeDREB2a and KcERF Improves Drought and Salt Tolerance in Transgenic Lotus corniculatus

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

DREB and ERF transcription factors play important roles in plant adaptation to abiotic stress. This study explores the function of co-overexpression of PeDREB2a and KcERF in transgenic Lotus corniculatus under abiotic stress. The two genes PeDREB2a and KcERF were expressed in L. corniculatus to study the effect on phenotype, physiology, and biochemical aspects of transgenic plants under drought and salt stress. The results indicated that transgenic L. corniculatus plants show better growth as compared to wild type under drought and salt conditions. Transgenic plants also showed elevated expression of stress-related genes under normal conditions, salt, and drought stress. The results revealed that co-overexpression of the two transcription factors, PeDREB2a, and KcERF, improved drought and salt tolerance in transgenic L. corniculatus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agarwal PK, Agarwal P, Reddy MK (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25:1263–1274

    Article  CAS  PubMed  Google Scholar 

  • Agarwal P, Agarwal PK, Joshi AJ, Sopory SK, Reddy MK (2010) Overexpression of PgDREB2A transcription factor enhances abiotic stress tolerance and activates downstream stress-responsive genes. Mol Biol Rep 37:1125–1135

    Article  CAS  PubMed  Google Scholar 

  • Augustine SM, Ashwin Narayan J, Syamaladevi DP, Appunu C, Chakravarthi M, Ravichandran V, Tuteja N, Subramonian N (2015) Overexpression of EaDREB2 and pyramiding of EaDREB2 with the pea DNA helicase gene (PDH45) enhance drought and salinity tolerance in sugarcane (Saccharum spp. hybrid). Plant Cell Rep 34:247–263

    Article  CAS  PubMed  Google Scholar 

  • Babitha KC, Vemanna RS, Nataraja KN, Udayakumar M (2014) Overexpression of EcbHLH57 transcription factor from Eleusine coracana L. in tobacco confers tolerance to salt, oxidative and drought stress. PLoS ONE 10(9):e0137098. doi:10.1371/journal.pone.0137098

    Article  Google Scholar 

  • Babithaa KC, Ramua SV, Pruthvi V, Mahesh P, Nataraja KN, Udayakumar M (2013) Co-expression of AtbHLH17 and AtWRKY28 confers resistance to abiotic stress in Arabidopsis. Trans Res 22(2):327–341

    Article  Google Scholar 

  • Bao AK, Wang YW, Xi JJ, Liu C, Zhang JL, Wang SM (2014) Co-expression of xerophyte Zygophyllum xanthoxylum ZxNHX and ZxVP1-1 enhances salt and drought tolerance in transgenic Lotus corniculatus by increasing cations accumulation. Funct Plant Biol 41:203–214

    Article  CAS  Google Scholar 

  • Bhaskaran S, Savithramma DL (2011) Co-expression of Pennisetum glaucum vacuolar Na+/H+ antiporter and Arabidopsis H+-pyrophosphatase enhances salt tolerance in transgenic tomato. J Exp Bot 62(15):5561–5570

    Article  CAS  PubMed  Google Scholar 

  • Bouaziz D, Pirrello J, Ben AH (2012) Ectopic expression of dehydration responsive element binding proteins (StDREB2) confers higher tolerance to salt stress in potato. Plant Physiol Biochem 60(11):98–108

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 6(6):735–743

    Article  Google Scholar 

  • Cui M, Zhang WJ, Zhang Q, Xu ZQ, Zhu ZG, Duan FP, Wu R (2011) Induced over-expression of the transcription factor OsDREB2A improves drought tolerance in rice. Plant Physiol Biochem 49(12):1384–1391

    Article  CAS  PubMed  Google Scholar 

  • Dubouzet JG, Sakuma (2003) OsDREB genes in rice, Oryzasativa L. encode transcription activators that function in drought, high salt and cold responsive gene expression. Plant J 33:751–763

    Article  CAS  PubMed  Google Scholar 

  • Fang LC, Su LY, Sun XM, Li XB, Sun MX, Karungo SK, Fang S, Chu JF, Li SH, Xin HP (2016) Expression of Vitis amurensis NAC26 in Arabidopsis enhances drought tolerance by modulating jasmonic acid synthesis. J Exp Bot 67(9):2829–2845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujimoto SY, Ohta M, Usui A, Shinshi H, Ohme-Takagi M (2000) Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 12:393–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutha LR, Reddy AR (2008) Rice DREB1B promoter shows distinct stress-specific responses, and the overexpression of cDNA in tobacco confers improved abiotic and biotic stress tolerance. Plant Mol Biol 68:533–555

    Article  CAS  PubMed  Google Scholar 

  • Hu TZ, Zhu SS, Tan LL, Qi WH, He S, Wang GX (2016) Overexpression of OsLEA4 enhances drought, high salt and heavy metal stress tolerance in transgenic rice (Oryza sativa L.). Environ Exp Bot 23:68–77

    Article  Google Scholar 

  • Jensen JS, Marcker KA, Otten L, Chell JS (1986) Nodule-specific expression of a chimaeric soybean leghaemoglobin gene in transgenic Lotus corniculatus. Nature 321(6071):669–674

    Article  CAS  Google Scholar 

  • Jin TC, Chang Q, Li WF, Yin DX, Li ZJ, Wang DL, Liu B, Liu LX (2010) Stress-inducible expression of GmDREB1 conferred salt tolerance in transgenic alfalfa. Plant Cell Tissue Organ Cult 100:219–227

    Article  CAS  Google Scholar 

  • Jung J, Won SY, Suh SC, Kim HR, Wing R, Jeong Y, Hwang I, Kim M (2007) The barley ERF-type transcription factor HvRAF confers enhanced pathogen resistance and salt tolerance in Arabidopsis. Planta 225:575–588

    Article  CAS  PubMed  Google Scholar 

  • Kovalchuk N, Jia W, Eini O (2013) Optimization of TaDREB3 gene expression in transgenic barley using cold-inducible promoters. Plant Biotechnol J 11(6):659–670

    Article  CAS  PubMed  Google Scholar 

  • Kudo M, Kidokoro S, Yoshida T, Mizoi J, Todaka D, Fernie AR, Shinozaki KY (2016) Double overexpression of DREB and PIF transcription factors improves drought stress tolerance and cell elongation in transgenic plants. Plant Biotechnol J. doi:10.1111/pbi.12644

    Google Scholar 

  • Li MR, Li Y, Li HQ (2011) Ectopic expression of FaDREB2 enhances osmotic tolerance in paper mulberry. J Integr Plant Biol 53(12):951–960

    Article  CAS  PubMed  Google Scholar 

  • Li MR, Li Y, Li HQ (2012) Improvement of paper mulberry tolerance to abiotic stresses by ectopic expression of tall fescue FaDREB1. Tree Physiol 32(1):104–113

    Article  PubMed  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki Y, Shinozaki k (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought and low temperature responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu BX, Zhao YM, Pang JF, Sun ZM, Wei YH, Wu YM (2013) Cloning and function analysis of KcERF from Kandelia obovata. Pratacult Sci 30(11):1740–1748 (Chinese).

    CAS  Google Scholar 

  • Liu HX, Wang YP, Zhou XS, Wang C, Wang C (2016) Overexpression of a harpin-encoding gene popW from Ralstonia solanacearum primed antioxidant defenses with enhanced drought tolerance in tobacco plants. Plant Cell Rep 35:1333–1344

    Article  PubMed  Google Scholar 

  • Luc W, Shao Y, Li L, Chen AL, Xu WQ, Wu KJ, Luo YB, Zhu B (2011) Overexpression of SlERF1 tomato gene encoding an ERF type transcription activator enhances salt tolerance. Russ J Plant Physiol 58(1):118–125

    Article  Google Scholar 

  • Meng XZ, Xu J, He YX, Yang KY, Mordorski B, Liu YD, Zhang SQ (2013) Phosphorylation of an ERF transcription factor by Arabidopsis MPK3/MPK6 regulates plant defense gene induction and fungal resistance. Plant Cell 25:1126–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Middleton PH, Jakab J, Penmetsa RV, Starker CG, Doll J, Kalo P, Prabhu R, Marsh JF, Mitra RM, Kereszt A, Dudas B, Vanden Bosch K, Long SR, Cook DR, Kiss GB, Oldroyd GED (2007) An ERF transcription factor in Medicago truncatula that is essential for nod factor signal transduction. Plant Cell 19:1221–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819:86–96

    Article  CAS  PubMed  Google Scholar 

  • Morran S, Eini O, Pyvovarenko T, Parent B, Singh R, Ismagul A, Eliby S, Shirley N, Langridge P, Lopato S (2011) Improvement of stress tolerance of wheat and barley by modulation of expression of DREB⁄CBF factors. Plant Biotechnol J 9:230–249

    Article  CAS  PubMed  Google Scholar 

  • Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140:411–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng XJ, Ma XY, Fan WH, Su M, Cheng LQ, Iftekhar A, Byung HL, Qi DM, Shen SH, Liu GS (2011) Improved drought and salt tolerance of Arabidopsis thaliana by transgenic expression of a novel DREB gene from Leymus chinensis. Plant Cell Rep 30:1493–1502

    Article  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):529–582

    Article  Google Scholar 

  • Qin J, Zhao KJ (2004) Isolation and characterization of an ERF-like gene from Gossypium barbadense. Trends Plant Sci 167:1383–1389

    Article  CAS  Google Scholar 

  • Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought responsive gene expression. Plant Cell 18(5):1292–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savic J, Platisa J, Dragicevic M, Nikolic R, Mitic N, Cingel A, Vinterhalter B (2010) The activity of peroxidases and superoxide dismutases in transgenic tic phosphinothricin-resistant Lotus corniculatus shoots. Arch Biol Sci 62(4):1063–1070

    Article  Google Scholar 

  • Shan DP, Huang JG, Yang YT (2007) Cotton GhDREBl increases plant tolerance to low temperature and is negatively regulated by gibberellic acid. New Phytol 176(1):70–81

    Article  CAS  PubMed  Google Scholar 

  • Sharma MK, Kumar R, Solanke AU, Sharma R, Tyagi AK, Sharma AK (2010) Identification, phylogeny, and transcript profiling of ERF family genes during development and abiotic stress treatments in tomato. Mol Gen Genom 284:455–475

    Article  CAS  Google Scholar 

  • Shen GX, Wei J, Qiu XY, Hu RB, Kuppu S, Auld D, Blumwald E, Gaxiola R, Payton P, Zhang H (2014) Co-overexpression of AVP1 and AtNHX1 in cotton further improves drought and salt tolerance in transgenic cotton plants. Plant Mol Biol Report 33(2):1–11

    CAS  Google Scholar 

  • Shen H, Zhong XB, Zhao FF, Wang YM, Yan BX, Li Q, Chen GY, Mao BZ, Wang JJ, Li YS, Xiao GY, He YK, Xiao H, Li JM, He ZH (2015) Overexpression of receptor-like kinase ERECTA improves thermotolerance in rice and tomato. Nat Biotechnol 33(9):996–1003

    Article  CAS  PubMed  Google Scholar 

  • Tang W, Newton RJ, Lin J (2006) Expression of a transcription factor from Capsicum annuum in pine calli counteracts the inhibitory effects of salt stress on adventitious shoot formation. Mol Gen Genom 276(3):242–253

    Article  CAS  Google Scholar 

  • Tian ZD, He Q, Wang HX, Liu Y, Zhang Y, Shao F, Xie CH (2015) The potato ERF transcription factor StERF3 negatively regulates resistance to phytophthora infestans and salt tolerance in potato. Plant Cell Physiol 3:1–4

    Google Scholar 

  • Trujillo LE, Sotolongo M, Menendez C, Ochogav ME, Coll Y, Hernandez I, Borras-Hidalgo O, Thomma BPHJ, Vera P, Hernandez L (2008) SodERF3, a novel sugarcane ethylene responsive factor (ERF), enhances salt and drought tolerance when overexpressed in tobacco plants. Plant Cell Physiol 49(4):512–525

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay RK, Soni DK, Singh R, Dwivedi UN, Pathre UV, Nath P, Sane AP (2013) SlERF36, an EAR-motif-containing ERF gene from tomato, alters stomatal density and modulates photosynthesis and growth. J Exp Bot 64(11):3237–3247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang QY, Guan YC, Wu YR (2008) Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol Biol 67:589–602

    Article  CAS  PubMed  Google Scholar 

  • Yamada M, Morishita H, Urano K, Shiozaki N, Yamaguchi-Shinozaki K, Shinozaki K, Yoshiba Y (2005) Effects of free proline accumulation in petunias under drought stress. J Exp Bot 56:1975–1981

    Article  CAS  PubMed  Google Scholar 

  • Zhang GY, Chen M, Chen XP, Xu ZS, Guan S, Li LC, Li AL, Guo JM, Mao L, Ma YZ (2008) Phylogeny, gene structures, and expression patterns of the ERF gene family in soybean (Glycine max L.). J Exp Bot 59(15):4095–4107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang GY, Chen M, Li LC, Xu ZS, Chen XP, Guo JM, Ma YZ (2009) Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J Exp Bot 60(13):3781–3796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao LF, Hu YB, Chong K, Wang T (2010) ARAG1, an ABA-responsive DREB gene, plays a role in seed germination and drought tolerance of rice. Ann Bot (Lond) 105:401–409

    Article  Google Scholar 

  • Zhou GA, Chang RZ, Qiu LJ (2010) Overexpression of soybean ubiquitin-conjugating enzyme gene. GmUBC2 confers enhanced drought and salt tolerance through modulating abiotic stress-responsive gene expression in Arabidopsis. Plant Mol Biol 72:357–367

    Article  CAS  PubMed  Google Scholar 

  • Zhou M-L, Ma J-T, Zhao Y-M, Wei Y-H, Tang Y-X, Wu Y-M, (2012) Improvement of drought and salt tolerance in Arabidopsis and Lotus corniculatus by overexpression of a novel DREB transcription factor from Populus euphratica. Gene 506(1):10–17

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 31372361) and National Program on Key Basic Research Project (973 Program) (Grant No. 2014CB138701).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meiliang Zhou or Yanmin Wu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

344_2017_9753_MOESM1_ESM.tif

Electronic Supplementary Figure 1. Transgenic Lotus corniculatus plants obtained after Agrobacterium infection transformation. (a) Callus induction of cotyledon after Agrobacterium infection and co-culture. (b) Kanamycin resistant calli of Lotus corniculatus obtained 4 weeks after transformation and selection of infected cotyledon pieces on selection medium. (c) Shoot-inducing differentiation from resistant calli 4 weeks after transfer onto regeneration-inducing medium. (d) Regeneration bud growth big enough for transplant after 2-4 weeks. (e) Regenerated shoots were planted onto root-inducing medium. (f) Shoots/plantlet differentiation 4 weeks after transfer onto shoot elongation medium. (g) The tissue culture seedlings were transplanted into wood chips to carry out the test. (h) Transgenic plants were transplanted to pots (TIF 2361 KB)

344_2017_9753_MOESM2_ESM.tif

Supplementary Figure 2. The asexual reproduction transgenic lines were obtained after stem cutting in the sawdust. (a) The stem sections with 2-3 nodes were cut. (b) Stem cuttings in moist sawdust. (c) The new plants were obtained when adventitious roots had formed. (TIF 1262 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Luo, W., Khurshid, M. et al. Co-expression of PeDREB2a and KcERF Improves Drought and Salt Tolerance in Transgenic Lotus corniculatus . J Plant Growth Regul 37, 550–559 (2018). https://doi.org/10.1007/s00344-017-9753-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-017-9753-z

Keywords

Navigation