Skip to main content
Log in

The Discovery of Abscisic Acid: A Retrospect

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Parallel to the discovery of auxin as a growth-promoting hormone in the first half of the last century, it became evident that inhibitors of auxin-induced cell elongation, seed germination and bud growth also existed in plants. Their activity was noticed first in more or less unspecific bioassays, and their natural function remained unknown for a long time. The introduction of paper chromatography in combination with bioassays enabled improved separation of plant extracts and identification of biologically active compounds. By means of these new techniques, a highly active growth inhibitory fraction named ‘inhibitor β’ was discovered in many plants. Evidence that this fraction seemed also to be involved in abscission processes resulted in the name ‘abscisin II’, whereas another research group that investigated the possible role of inhibitor β in bud dormancy proposed the name ‘dormin’. Great efforts were made to identify the chemical nature of the two compounds. In 1965, it was recognized that abscisin II and dormin possessed the same chemical structure, which received the name ‘abscisic acid’ (ABA). Soon afterwards the extraordinary role of ABA as a hormone involved in stress reactions and in seed maturation was discovered, whereas its suggested function in abscission and bud dormancy processes has not been well established until now. The name ABA is therefore not adequate with regard to the hormonal functions, but it is acceptable with regard to priority rules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Addicott FT (ed) (1983) Abscisic acid. Praeger, New York

    Google Scholar 

  • Addicott FT, Carns HR, Lyon JL, Smith OE, McMeans JL (1964) On the physiology of abscisins. In: Nitsch JP (ed) Regulateurs Naturels de la Croissance Vegetale. Cent Nat Rech Sci, Paris, pp 687–703

    Google Scholar 

  • Addicott FT et al (1968) Abscisic acid: a new name for abscisin II (dormin). Science 159:1493

    Article  CAS  PubMed  Google Scholar 

  • Ansist PIP, Friend J, Gardner DCI (1975) The role of xanthoxin in the inhibition of pea seedling growth by red light. Phytochemistry 14:31–35

    Article  Google Scholar 

  • Audus LJ (1959) Plant growth substances. Leonard Hill, London

    Google Scholar 

  • Barros RS, Neill SJ (1986) Periodicity of response to abscisic acid in lateral buds of willow (Salix viminalis L.). Planta 168:530–535

    Article  CAS  PubMed  Google Scholar 

  • Bayer M (1961) Über die Aktivierung des Hemmstoffsystems von Helianthus durch kurzfristige Belichtung. Planta 57:258–265

    Article  CAS  Google Scholar 

  • Beardsell MF, Cohen D (1975) Relationships between leaf water status, abscisic acid levels and stomatal resistance in maize and sorghum. Plant Physiol 56:207–212

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bennet-Clark TS, Kefford NP (1953) Chromatography of the growth substances in plant extracts. Nature 171:645–647

    Article  CAS  PubMed  Google Scholar 

  • Beveridge CA (2006) Axillary bud outgrowth. Curr Opin Plant Biol 9:35–40

    Article  CAS  PubMed  Google Scholar 

  • Black M (1983) Abscisic acid in seed germination and dormancy. In: Addicott FT (ed) Abscisic acid. Praeger, New York, pp 331–365

    Google Scholar 

  • Black M (1991) Involvement of ABA in the physiology of developing and mature seeds. In: Davies WJ, Jones HG (eds) Abscisic acid: physiology and biochemistry. Bios, Oxford, pp 99–124

    Google Scholar 

  • Böttger M (1970) Die hormonale Regulation des Blattfalls bei Coleus rheneltianus. Planta 93:205–213

    Article  PubMed  Google Scholar 

  • Boysen-Jensen P (1935) Die Wuchsstofftheorie. Gustav Fischer, Jena

    Google Scholar 

  • Burden RS et al (1971) Induction of plant growth inhibitor xanthoxin in seedlings by red light. Nature New Biol 234:95–96

    Article  CAS  PubMed  Google Scholar 

  • Carns HR, Hacskaylo J, Embry JL (1954) Relation of an indole-3-acetic acid inhibitor to cotton boll development. In: Proceedings of 9th Cotton Defoliation Conference in Memphis Tenn, p 65–69

  • Carns HR (1966) Abscission and its control. Ann Rev Plant Physiol 27:207–228

    Google Scholar 

  • Chang YP, Jacobs WP (1973) The regulation of abscission and IAA by senescence factor and abscisic acid. Am J Bot 60:10–16

    Article  CAS  Google Scholar 

  • Cline M (1994) The role of hormones in apical dominance. New approaches to an old problem in plant development. Physiol Plant 90:230–237

    Article  CAS  Google Scholar 

  • Coleman WK, King RR (1984) Changes in endogenous abscisic acid, soluble sugars and proline levels during tuber dormancy in Solanum tuberosum. Am Potato J 61:437–449

    Article  CAS  Google Scholar 

  • Cornforth JW, Milborrow BV, Ryback G, Wareing PF (1965a) Chemistry and physiology of “dormins” in sycamore. Identity of sycamore “dormin” with abscisin II. Nature 205:1269–1270

    Article  CAS  Google Scholar 

  • Cornforth JW, Milborrow BV, Ryback G (1965b) Synthesis of abscisin II. Nature 206:715

    Article  CAS  Google Scholar 

  • Cornforth JW et al (1966) Identification of the yellow lupin growth inhibitor as (+)-abscisin II ((+)-dormin). Nature 211:742–743

    Article  CAS  PubMed  Google Scholar 

  • Czapek F (1903) Antifermente im Pflanzenorganismus. Ber dtsch bot Ges 21:229–242

    Google Scholar 

  • Davis LA, Addicott FT (1972) Abscisic acid: correlations with abscission and with development in the cotton fruit. Plant Physiol 49:644–648

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dörffling K (1963) Die Bedeutung von inhibitor β für die korrelative Hemmung und für die Winterruhe der Knospen von Acer pseudoplatanus. Planta 59:346–350

    Article  Google Scholar 

  • Dörffling K (1964) Über das Wuchsstoff-Hemmstoffsystem von Acer pseudoplatanus. Planta 60:390–433

    Article  Google Scholar 

  • Dörffling K (1970) Abscisinsäure und Keimungshemmung in der Tomatenfrucht. Planta 93:243–256

    Article  Google Scholar 

  • Dörffling K (1971) Das Phytohormon Abscisinsäure. Biol Rdsch 9:129–143

    Google Scholar 

  • Dörffling K (1976) Correlative bud inhibition and abscisic acid in Acer pseudoplatanus and Syringa vulgaris. Phsiol Plant 38:319–322

    Article  Google Scholar 

  • Dörffling K (1985) Zur Funktion von Abscisinsäure als Regulator des Wasserhaushalts in Pflanzen. In: Böger P (ed) Physiologische Schlüsselprozesse in Pflanze und Insekt. Universitätsverlag, Konstanz, pp 103–124

    Google Scholar 

  • Dörffling K et al (1978) Physiology and chemistry of abscission accelerators in senescent petioles and fruit stalks. Physiol Plant 43:292–296

    Article  Google Scholar 

  • Dun EA et al (2013) Dynamics of strigolactone function and shoot branching responses in Pisum sativum. Mol Plant 6:128–140

    Article  CAS  PubMed  Google Scholar 

  • Eagles CF, Wareing PF (1963) Dormancy regulators in woody plants. Experimental induction of dormancy in Betula pubescens. Nature 199:874–875

    Article  CAS  Google Scholar 

  • El-Antably HMM, Wareing PF, Hillman J (1967) Some physiological responses to d, l-abscisin (dormin). Planta 73:74–90

    Article  CAS  PubMed  Google Scholar 

  • Errera L (1904) Conflits de preseance et excitations inhibitoires chez les vegetaux. Bull Soc Bot Belg 42:27

    Google Scholar 

  • Evenari M (1949) Germination inhibitors. Bot Rev 15:153–194

    Article  Google Scholar 

  • Fukaki S (1930) Über die Beeinflussung des eigenen Fruchtsaftes auf die Samenkeimung. Bull Sci Fac Tercult Kjusu Imp Univ 4

  • Funke H, Söding H (1948) Über das Wuchsstoff-Hemmstoffsystem der Kartoffelknolle. Planta 36:341–370

    Article  Google Scholar 

  • Glinka Z (1977) Effects of abscisic acid and of hydrostatic pressure gradient on water movement through excised sunflower roots. Plant Physiol 59:933–935

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Glinka Z (1980) Abscisic acid promotes both volume flow and ion release to the xylem in sunflower roots. Plant Physiol 65:537–540

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Glinka Z, Reinhold L (1971) Abscisic acid raises the permeability of plant cells to water. Plant Physiol 48:103–105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goebel K (1880) Beiträge zur Morphologie und Physiologie des Blattes. Bot Ztg 38:809

    Google Scholar 

  • Gomez-Roldan V et al (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194

    Article  CAS  PubMed  Google Scholar 

  • Hemberg T (1946) Wachstumshemmende und wachstumsfördernde Stoffe bei der Kartoffel. Ark Bot B 33 No 2

  • Hemberg T (1949) Significance of growth-inhibiting substances and auxins for the rest-period of the potato tuber. Physiol Plant 2:24–36

    Article  CAS  Google Scholar 

  • Hemberg T (1958) Occurrence of acid inhibitors in resting terminal buds of Fraxinus. Physiol Plant 11:610–614

    Article  CAS  Google Scholar 

  • Hemberg T (1965) The significance of inhibitors and other chemical factors of plant origin in the induction and breaking of rest periods. Encycl Plant Physiol XV/2:696–698

    Google Scholar 

  • Hocking JJ, Hillman JR (1975) Studies on the role of abscisic acid in the initiation of bud dormancy in Alnus glutinosa and Betula pubescens. Planta 125:235–242

    Article  CAS  PubMed  Google Scholar 

  • Jacobs WP (1962) Longevity of plant organs: internal factors controlling abscission. Ann Rev Plant Physiol 13:403–436

    Article  CAS  Google Scholar 

  • Juel I (1946) Studies on a growth retarding substance in tomato. Dansk Bot Arkiv 12:1–16

    Google Scholar 

  • Kefford NP (1955) The growth substances separated from plant extracts by chromatography. J Exp Bot 6:129–151

    Article  CAS  Google Scholar 

  • Köckemann A (1934) Über eine keimungshemmende Substanz in fleischigen Früchten. Ber Dtsch Bot Ges 52:523–526

    Google Scholar 

  • Köckemann A (1936) Zur Frage der keimungshemmenden Substanzen in fleischigen Früchten. Beih Bot Zbl A 55:191–196

    Google Scholar 

  • Koshimizu KH et al (1966) Identity of lupin inhibitor with abscisin II and its biological activity on growth of rice seedlings. Agr Biol Chem (Japan) 30:941–943

    Article  CAS  Google Scholar 

  • Laibach F (1933) Versuche mit Wuchsstoffpaste. Ber dtsch bot Ges 51:386–392

    CAS  Google Scholar 

  • Larsen P (1939) Über Hemmung des Streckungswachstums durch natürlich vorkommende, ätherlösliche Stoffe. Planta 30:160–167

    Article  CAS  Google Scholar 

  • Larsen P (1951) Formation, occurrence and inactivation of growth substances. Annu Rev Plant Physiol 2:168–198

    Article  Google Scholar 

  • Le Page-Degivry MT, Barthe P, Garello G (1990) Involvement of endogenous abscisic acid in onset and release of Helianthus annuus embryo dormancy. Plant Physiol 92:1164–1168

    Article  PubMed Central  PubMed  Google Scholar 

  • Lenton JR, Perry VM, Saunders PF (1972) Endogenous abscisic acid in relation to photoperiodically induced bud dormancy. Planta 106:13–22

    Article  CAS  PubMed  Google Scholar 

  • Libbert E (1954) Das Zusammenwirken von Wuchs- und Hemmstoffen bei der korrelativen Knospenhemmung. Planta 44:286–318

    Article  CAS  Google Scholar 

  • Libbert E (1955) Nachweis und chemische Trennung des Korrelationshemmstoffes und seiner Hemmstoffvorstufe. Planta 45:405–425

    Article  CAS  Google Scholar 

  • Lipe JA, Morgan PW (1972) Ethylene role in fruit abscission and dehiscence processes. Plant Physiol 50:759–764

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Litvinow LS (1938) On the causes of the inhibiting effect of tomato sap on the germination of tomato seeds. Perm Biol Nauch Issled Inst Bull 11:163–171

    Google Scholar 

  • Liu WC, Carns HR (1961) Isolation of abscisin, an abscission accelerating substance. Science 143:384–385

    Article  Google Scholar 

  • Ludewig M, Dörffling K, Seifert H (1988) Abscisic acid and water transport in sunflower. Planta 175:325–333

    Article  CAS  PubMed  Google Scholar 

  • Mai G (1934) Korrelationsuntersuchungen an entspreiteten Blattstielen mit lebenden Orchideenpollinien als Wuchsstoffquelle. Jahrb Wiss Bot 79:581–713

    Google Scholar 

  • Michener HD (1942) Dormancy and apical dominance in potato tubers. Am J Bot 29:558–568

    Article  Google Scholar 

  • Milborrow BV (1967) The identification of (+)-abscin II ((+)-dormin) in plants and measurement of its concentration. Planta 76:93–113

    Article  CAS  PubMed  Google Scholar 

  • Milborrow BV (1983) Pathways to and from abscisic acid. In: Addicott FT (ed) abscisic acid. Praeger, New York, pp 79–111

    Google Scholar 

  • Mittelheuser CJ, Van Steveninck RFM (1969) Stomatal closure and inhibition of transpiration by RS-abscisic acid. Nature 221:281–282

    Article  CAS  Google Scholar 

  • Mizrahi YA, Richmond AE (1970) Abscisic acid and transpiration in leaves in relation to osmotic root stress. Plant Physiol 46:169–171

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moewus F, Moewus L, Schader E (1951) Vorkommen und Bedeutung von Blastokolinen in fleischigen Früchten. Z Naturforschung 6b:261–270

    Google Scholar 

  • Molisch H (1922) Pflanzenphysiologie als Theorie der Gärtnerei, 5th edn. G. Fischer, Jena

    Google Scholar 

  • Morgan PW (1984) Is ethylene the natural regulator of abscission? In: Fuchs Y, Chalutz E (eds) ethylene. Martinus Nijhoff/Dr W Junk Publishers, The Hague

    Google Scholar 

  • Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185

    Article  CAS  PubMed  Google Scholar 

  • Naumann R, Dörffling K (1982) Variation of free and conjugated abscisic acid, phaseic acid and dihydrophaseic acid levels in ripening barley grains. Plant Sci Lett 27:111–117

    Article  CAS  Google Scholar 

  • Oden PC, Dunberg A (1984) Abscisic acid in shoots and roots of Scots pine (Pinus sylvestris L.) seedlings grown in controlled long-day and short-day environment. Planta 161:148–155

    Article  CAS  PubMed  Google Scholar 

  • Ohkuma K et al (1965) The structure of abscisin II. Tetrahedron Lett 29:2529–2535

    Article  Google Scholar 

  • Oppenheimer H (1922) Keimungshemmende Substanzen in der Frucht von Solanum lycopersicum. J-B Akad Wiss Wien 131:59–65

    Google Scholar 

  • Osborne D (1955) Acceleration of abscission by a factor produced in senescent leaves. Nature 176:1161–1163

    Article  CAS  Google Scholar 

  • Osborne DJ, Jackson MB, Milborrow BV (1972) Physiological properties of abscission accelerator from senescent leaves. Nat New Biol 240:98–101

    Article  CAS  PubMed  Google Scholar 

  • Perry TO, Hellmers H (1973) Effects of abscisic acid on growth and dormancy of two races of red maple. Bot Gaz 134:283–289

    Article  CAS  Google Scholar 

  • Porter NG, Van Steveninck RFM (1966) An abscission-promoting factor in Lupinus luteus L. Life Sci 5:2301–2308

    Article  CAS  Google Scholar 

  • Quamaruddin M et al (1993) Abscisic acid content at defined levels of bud dormancy and frost tolerance in two contrasting populations of Picea abies grown in a phytotron. Physiol Plant 87:203–210

    Article  Google Scholar 

  • Quarrie SA, Jones HG (1977) Effects of abscisic acid and water stress on development and morphology of wheat. J Exp Bot 28:192–203

    Article  CAS  Google Scholar 

  • Rinne P et al (1994) Seasonal changes in bud dormancy in relation to bud morphology, water and starch content, and abscisic acid concentration in adult trees of Betula pubescens. Tree Physiol 14:549–561

    Article  CAS  PubMed  Google Scholar 

  • Robinson PM, Wareing PF (1964) Chemical nature and biological properties of the inhibitor varying with photoperiod. Physiol Plant 17:314–323

    Article  CAS  Google Scholar 

  • Robinson PM, Wareing PF, Thomas TH (1963) Isolation of the inhibitor varying with photoperiod in Acer pseudoplatanus. Nature 199:875–876

    Article  CAS  Google Scholar 

  • Rothwell K, Wain RL (1964) Studies on a growth inhibitor in yellow lupin (Lupinus luteus L.). In: Nitsch JP (ed) Regulateurs Naturels de la Croissance Vegetale. Cent Nat Rech Sci, Paris, pp 363–375

    Google Scholar 

  • Ryback G, Robinson DR (1970) Quantitative optical rotatory dispersion. Bull Photoelectr Spect Group 19:588–594

    Google Scholar 

  • Sagee O, Goren R, Riov J (1980) Abscission of Citrus leaf explants. Interrelationship of abscisic acid, ethylene and hydrolytic enzymes. Plant Physiol 66:750–753

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saunders PF (1978) Phytohormones and bud dormancy. In: Letham DS, Goodwin PB, Higgins TJV (eds) Phytohormones and related compounds. Elsevier/North Holland, Amsterdam, pp 423–445

    Google Scholar 

  • Saunders PF et al (1974) Abscisic acid in tree growth. Plant growth substances 1973. Hirokawa, Tokyo, pp 871–881

    Google Scholar 

  • Smart CC (1996) Molecular analysis of turion formation in Spirodela polyrhiza: a model system for dormant bud induction. In: Lang GA (ed) Plant dormancy. Cab International, Wallingford, pp 269–281

    Google Scholar 

  • Snow R (1925) The correlative inhibition of the growth of axillary buds. Ann Bot 39:841–859

    Google Scholar 

  • Snow R (1937) On the nature of correlative inhibition. New Phytol 36:283–300

    Article  CAS  Google Scholar 

  • Söding H (1952) Die Wuchsstofflehre. Thieme, Stuttgart

    Google Scholar 

  • Stewart WS (1939) A plant growth inhibitor and plant growth inhibition. Bot Gaz 101:91–108

    Article  CAS  Google Scholar 

  • Suttle JC, Hultstrand JF (1994) Role of endogenous abscisic acid in potato microtuber dormancy. Plant Physiol 105:891–896

    PubMed Central  CAS  PubMed  Google Scholar 

  • Taiz L, Zeiger E (2010) Plant physiology, 5th edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Tal M, Imber D (1970) Abnormal stomatal behaviour and hormonal imbalance in flacca, a wilty mutant of tomato. II Auxin- and abscisic acid-like activity. Plant Physiol 46:373–376

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tal M, Imber D (1971) Abnormal stomatal behaviour and hormonal imbalance in flacca, a wilty mutant of tomato. III. Hormonal effects on the water status in the plant. Plant Physiol 47:849–850

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Taylor HF, Burden RS (1970) Identification of plant growth inhibitors produced by photolysis of violaxanthin. Phytochem 9:2217–2223

    Article  CAS  Google Scholar 

  • Taylor HF, Smith TA (1967) Production of plant growth inhibitors from xanthophylls: a possible source of dormin. Nature 215:1513–1514

    Article  CAS  PubMed  Google Scholar 

  • Thimann K, Skoog F (1934) On the inhibition of bud development and other functions of growth substances in Vicia faba. Proc R Soc Lond B114:317–339

    Article  Google Scholar 

  • Thompson AG, Bruinsma J (1977) Xanthoxin: a growth inhibitor in light-grown sunflower seedlings, Helianthus annuus. J Exp Bot 28:804–810

    Article  CAS  Google Scholar 

  • Trewawas AJ (1987) Sensitivity and sensory adaptation in growth substance responses. In: Hoad GV, Lenton JR, Jackson MB, Atkin RK (eds) Hormone action in plant development. Butterworths, London, pp 19–39

    Google Scholar 

  • Vahala J et al (2003) Ethylene insensitivity modulates ozone-induced cell death in birch (Betula pendula). Plant Physiol 132:185–195

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Van den Berg JH et al (1991) Changes in starch and abscisic acid content associated with second growth in tubers of potato (Solanum tuberosum L.) one-leaf cuttings. J Plant Physiol 139:86–89

    Article  Google Scholar 

  • Van Steveninck RFM (1959) Abscission accelerators in lupins (Lupinus luteus L.). Nature 183(1246–2):48

    Google Scholar 

  • Varga M (1957) Examination of growth-inhibiting substances separated by paper chromatography in fleshy fruits. Acta Biol Szeged 3:213

    CAS  Google Scholar 

  • Vegis A (1964) Dormancy in higher plants. Ann R Plant Physiol 15:185–224

    Article  CAS  Google Scholar 

  • Walton DC, Harrison MA, Cote P (1976) The effects of water stress on abscisic acid levels and metabolism in roots of Phaseolus vulgaris and other plants. Planta 131:141–144

    Article  CAS  PubMed  Google Scholar 

  • Wareing PF, Saunders PF (1971) Hormones and dormancy. Ann Rev Plant Physiol 22:261–288

    Article  CAS  Google Scholar 

  • Wareing PF, Eagles CF, Robinson PM (1964) Natural inhibitors as dormancy agents. In: Nitsch JP (ed) Regulateurs Naturels de la Croissance Vegetale. Cent Nat Rech Sci, Paris, pp 377–386

    Google Scholar 

  • Went FW (1928) Wuchsstoff und Wachstum. Recl Trav Bot Neel 25:1–116

    Google Scholar 

  • Went FW, Thimann KV (1937) Phytohormones. MacMillan, New York

    Google Scholar 

  • Wright STC (1954) A chromatographic study of auxins in relation to fruit morphogenesis and fruit drop in blackcurrant (Ribes nigrum). PhD Thesis, University of Bristol

  • Wright STC (1969) An increase in the “inhibitor β” content of detached wheat leaves following a period of wilting. Planta 86:10–20

    Article  CAS  PubMed  Google Scholar 

  • Wright STC, Hiron RWP (1969) (+)-Abscisic acid, the growth inhibitor induced in detached leaves by a period of wilting. Nature 224:719–720

    Article  CAS  Google Scholar 

  • Wright STC, Hiron RWP (1972) The accumulation of abscisic acid in plants during wilting and under other stress conditions. In: Carr DJ (ed) Plant growth substances 1970. Springer, Berlin

    Google Scholar 

  • Yamaguchi T, Street HE (1977) Stimulation of the growth of excised cultured roots of soya bean by abscisic acid. Ann Bot 41:1129–1133

    CAS  Google Scholar 

  • Zacarias L, Reid MS (1990) Role of growth regulators in the senescence of Arabidopsis thaliana leaves. Physiol Plant 80:549–554

    Article  CAS  Google Scholar 

  • Zhang J, Davies WJ (1987) Increased synthesis of ABA in partially dehydrated root tips and ABA transport from root to leaves. J Exp Bot 38:2015–2023

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I thank Hartwig Lüthen for inviting me to write this article and for valuable advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Dörffling.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dörffling, K. The Discovery of Abscisic Acid: A Retrospect. J Plant Growth Regul 34, 795–808 (2015). https://doi.org/10.1007/s00344-015-9525-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-015-9525-6

Keywords

Navigation