Skip to main content
Log in

Synthesis and characterization of Eu, Pr-doped garnet with augmented Ce solubility via controlled Fe2O3 reduction

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Magnetic ceramics (ferrites) have long held a prominent position in various applications owing to their favorable properties. In the realm of ferrites, yttrium iron garnet (YIG) possesses distinctive optical and magneto-optical properties. In this area, Ce and Pr elements can synergistically amplify the magneto-optical properties of garnet, although the solubility limitation of Ce restricts the addition of large amounts of this element. In the synthesized composition of CexEu0.25Pr0.25Y2.5-xFe5O12 (x = 0.25, 0.35, 0.5) in the current research, a fixed amount of 0.25 mol of Pr has been considered, and to prevent the deposition of CeO2, 0.25 mol of Eu has been included as an additive. Additionally, a hypothesis has been proposed suggesting that the controlled depletion (3–8 wt%) of iron oxide can effectively boost the solubility of Ce in garnets. For the synthesis of samples, the optimized solid-state method has been used at two sintering temperatures of 1350 and 1420 °C in the air using oxide precursors. X-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) mapping analyses have been utilized to investigate the crystallographic and phase properties. The findings reveal that Eu effectively elevates Ce solubility by 0.25 mol, aligning with expectations when co-doped with the other two elements possessing larger ionic radii than Y. This study represents the first instance of these elements being co-doped into garnet. Furthermore, the conducted tests provide support for the proposed hypothesis concerning the influence of Fe2O3 reduction on increasing Ce solubility. Consequently, this investigation achieves the successful incorporation of 0.35 mol of cerium into the garnet structure through a 3 wt% reduction of Fe2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. R. Valenzuela, Magnetic Ceramics (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  2. K. Karthika, V. Srivastava, Optoelectronic behavior of some spinel oxides for sustainable engineering. E3S Web Conf. 453, 01058 (2023)

    Article  Google Scholar 

  3. A. Radoń et al., Influence of magnetite nanoparticles surface dissolution, stabilization and functionalization by malonic acid on the catalytic activity, magnetic and electrical properties. Colloids Surf. A 607, 125446 (2020)

    Article  Google Scholar 

  4. A. Radoń et al., Influence of the modifiers in polyol method on magnetically induced hyperthermia and biocompatibility of ultrafine magnetite nanoparticles. Sci. Rep. 13(1), 7860 (2023)

    Article  ADS  Google Scholar 

  5. A. Radoń et al., Influence of magnetite nanoparticles shape and spontaneous surface oxidation on the electron transport mechanism. Materials 14(18), 5241 (2021)

    Article  ADS  Google Scholar 

  6. R.C. Pullar, Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 57(7), 1191–1334 (2012)

    Article  Google Scholar 

  7. T. Jiao, C. You, N. Tian, Z. Duan, F. Yan, Structural distortion induced enhancement of magnetic and dielectric properties in Pr modified yttrium iron garnet films. Ceram. Int. 49(6), 10129–10138 (2023)

    Article  Google Scholar 

  8. Ji Ke. Xinran, Zhou Ye, Zhao Meiling, Sun Shijun, Dong Hongbo, Zhang Hechun, Cao Hui, Wu. Zheng Qiong, Zhang Yang, Crystal structure magnetic dielectric and ferromagnetic resonance properties of Pr-Zn-Zr Co-doped Yttrium Iron Garnet. J. Electron. Mater. 51(3), 1180–1188 (2022). https://doi.org/10.1007/s11664-021-09382-w

    Article  Google Scholar 

  9. B.K. Singh, S.K. Mishra, Microstructure and surface morphology of YIG and 2 wt% Ce-doped YIG thin films synthesized via sol-gel method. Mater. Today Proc. 44, 886–889 (2021)

    Article  Google Scholar 

  10. M.N. Smirnova et al., Synthesis of Ce: YIG nanopowder by gel combustion. Haнocиcтeмы: физикa, xимия, мaтeмaтикa 12(2), 210–217 (2021)

  11. H. Liu et al., Strong magneto-optical effect of incongruent-melting Ce, Sc, Ca: GIG crystal with heavy Ce3+ doping. J. Mark. Res. 20, 2518–2526 (2022)

    Google Scholar 

  12. M. Kuila, U. Deshpande, R. Choudhary, P. Rajput, D. Phase, V. Raghavendra Reddy, Study of magneto-optical activity in cerium substituted yttrium iron garnet (Ce: YIG) epitaxial thin films. J. Appl. Phys. 129(9), 093903 (2021)

    Article  ADS  Google Scholar 

  13. K. Srinivasan, C. Radu, D. Bilardello, P. Solheid, B.J. Stadler, Interfacial and bulk magnetic properties of stoichiometric cerium doped terbium iron garnet polycrystalline thin films. Adv. Funct. Mater.Funct. Mater. 30(15), 2000409 (2020)

    Article  Google Scholar 

  14. Z. Wei, W. Yan, J. Qin, L. Deng, L. Bi, Dysprosium substituted Ce: YIG thin films for temperature insensitive integrated optical isolator applications. Materials 15(5), 1691 (2022)

    Article  ADS  Google Scholar 

  15. O. Opuchovic et al., Cerium doping and cerium aluminium co-doping effects on the sol-gel processing of Y3Fe5O12 (YIG): bulk and thin films. Solid State Sci. 99, 106065 (2020)

    Article  Google Scholar 

  16. V. Dongquoc et al., Enhancing the magnetic and magneto-optical properties of praseodymium-substituted Bi-YIG thin film on glass substrate prepared by metal-organic decomposition. J. Magn. 26(1), 14–18 (2021)

    Article  Google Scholar 

  17. S.S. Dash, G. Odegard, M. Levy, Band structure reconfiguration and surface Faraday rotation in Bi-substituted iron garnets. Opt. Mater. Express 14(3), 715–724 (2024)

    Article  Google Scholar 

  18. S.H. Kim et al., Praseodymium-dopant effect on bismuth-substituted yttrium iron garnet films on fused silica glass substrate at the 1310 and 1550-nm wavelengths. AIP Adv. (2023). https://doi.org/10.1063/5.0150763

    Article  Google Scholar 

  19. M. Yang et al., Single-crystal structure, cation distribution, and optical/magnetic properties of Ce3+-doped Gd3Al2Ga3O12 crystal. J. Cryst. Growth 621, 127380 (2023)

    Article  Google Scholar 

  20. H.-X. Zhang et al., Observation of enhanced faraday effect in Eu-Doped Ce: YIG thin films. Chin. Phys. Lett. 40(12), 127801 (2023)

    Article  ADS  Google Scholar 

  21. A. Ikesue, Y. Aung, R. Yasuhara, Y. Iwamoto, Giant Faraday rotation in heavily ce-doped YIG bulk ceramics. J. Eur. Ceram. Soc. 40(15), 6073–6078 (2020)

    Article  Google Scholar 

  22. M. Gomi, H. Toyoshima, Magneto-optical enhancement in sputtered epitaxial films of praseodymium-substituted yttrium iron garnet. J. Appl. Phys. 82(3), 1359–1362 (1997)

    Article  ADS  Google Scholar 

  23. M. Huang, S.-Y. Zhang, Growth and characterization of cerium-substituted yttrium iron garnet single crystals for magneto-optical applications. Appl. Phys. A 74(2), 177–180 (2002)

    Article  ADS  Google Scholar 

  24. M. Niyaifar, H. Mohammadpour, A. Behmanesh, Correlation of structural distortion with magnetic properties of Pr-YIG system. J. Alloy. Compd. 683, 495–500 (2016)

    Article  Google Scholar 

  25. M. Basavad, H. Shokrollahi, M. Golkari, Effect of thermal cycle and Bi/Eu doping on the solubility of Ce in YIG. Ceram. Int. 46(12), 20144–20154 (2020)

    Article  Google Scholar 

  26. P. Grosseau, A. Bachiorrini, B. Guilhot, Preparation of polycrystalline yttrium iron garnet ceramics. Powder Technol. 93(3), 247–251 (1997)

    Article  Google Scholar 

  27. A. Sztaniszlav, E. Sterk, L. Fetter, M. Farkas-Jahnke, J. Labar, Investigation of garnet formation by sintering of Y2O3 and Fe2O3. J. Magn. Magn. Mater. 41(1–3), 75–78 (1984)

    Article  ADS  Google Scholar 

  28. W. Ali et al., Structural properties of cerium substituted yttrium iron garnet. Adv. Mater. Res. 1087, 157–161 (2015)

    Article  Google Scholar 

  29. W.F.F.W. Ali, M. Othman, M.F. Ain, N.S. Abdullah, Z.A. Ahmad, The behavior of high frequency tunable dielectric resonator antenna (DRA) with the addition of excess Fe 2 O 3 in Y 3 Fe 5 O 12 (YIG) formulation. J. Mater. Sci. Mater. Electron. 25, 560–572 (2014)

    Article  Google Scholar 

  30. T.-C. Mao, J.-C. Chen, C.-C. Hu, Characterization of the growth mechanism of YIG crystal fibers using the laser heated pedestal growth method. J. Cryst. Growth 282(1–2), 143–151 (2005)

    Article  ADS  Google Scholar 

  31. S. Shahrokhvand, A. Rozatian, M. Mozaffari, S. Hamidi, M. Tehranchi, Preparation and investigation of Ce: YIG thin films with a high magneto-optical figure of merit. J. Phys. D Appl. Phys. 45(23), 235001 (2012)

    Article  ADS  Google Scholar 

  32. Q. Fu et al., New magneto-optical film of Ce, Ga: GIG with high performance. J. Am. Ceram. Soc. 99(1), 234–240 (2016)

    Article  Google Scholar 

  33. S. Shahrokhvand, M. Mozaffari, A. Rozatian, S. Hamidi, M. Tehranchi, Effect of cerium substitution on microstructure and Faraday rotation of Ce x Y 3–x Fe 5 O 12 thin films. Appl. Phys. A 122, 1–5 (2016)

    Article  Google Scholar 

  34. T. Shen, H. Dai, M. Song, H. Liu, X. Wei, Structure and magnetic properties of Ce-substituted yttrium iron garnet prepared by conventional sintering techniques. J. Supercond. Novel Magn. Supercond. Novel Magn. 30(4), 937–941 (2017)

    Article  Google Scholar 

  35. A. Bhalekar, L. Singh, Structural and magnetic studies of aluminum substituted YIG nanoparticles prepared by a sol-gel route. Braz. J. Phys. 49(5), 636–645 (2019)

    Article  ADS  Google Scholar 

  36. M.N. Akhtar, M. Yousaf, S. Khan, M. Nazir, M. Ahmad, M.A. Khan, Structural and electromagnetic evaluations of YIG rare earth doped (Gd, Pr, Ho, Yb) nanoferrites for high frequency applications. Ceram. Int. 43(18), 17032–17040 (2017)

    Article  Google Scholar 

  37. Y. Zhang et al., Enhanced magneto-optical effect in Y1. 5Ce1. 5Fe5O12 thin films deposited on silicon by pulsed laser deposition. J. Alloy. Compd. 703, 591–599 (2017)

    Article  Google Scholar 

  38. G. Jayakumar, A.A. Irudayaraj, A.D. Raj, Investigation on the synthesis and photocatalytic activity of activated carbon–cerium oxide (AC–CeO2) nanocomposite. Appl. Phys. A 125(11), 742 (2019)

    Article  ADS  Google Scholar 

  39. M. Farahmandjou, M. Zarinkamar, T. Firoozabadi, Synthesis of Cerium Oxide (CeO2) nanoparticles using simple CO-precipitation method. Revista mexicana de física 62(5), 496–499 (2016)

    MathSciNet  Google Scholar 

  40. T.G. Mayerhöfer, Wave Optics in Infrared Spectroscopy (2021)

  41. W.F.F.W. Ali, H.H. Jaafar, M.F. Ain, N.S. Abdullah, Z.A. Ahmad, Enhancement of YIG bandwidth efficiency through Ce-doping for dielectric resonator antenna (DRA) applications. J. Mater. Sci. Mater. Electron. 26(1), 504–514 (2015)

    Article  Google Scholar 

  42. A. Radoń et al., Structure and magnetic properties of ultrafine superparamagnetic Sn-doped magnetite nanoparticles synthesized by glycol assisted co-precipitation method. J. Phys. Chem. Solids 145, 109530 (2020)

    Article  Google Scholar 

  43. N. Ibrahim, A. Arsad, Investigation of nanostructural, optical and magnetic properties of cerium-substituted yttrium iron garnet films prepared by a sol gel method. J. Magn. Magn. Mater. 401, 572–578 (2016)

    Article  ADS  Google Scholar 

  44. X.Y. Sun et al., Single-step deposition of cerium-substituted yttrium iron garnet for monolithic on-chip optical isolation. ACS Photonics 2(7), 856–863 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Hooman Shokrollahi and Farhad Shahriari Nogorani supervised the research work. Mohsen Basavad conceptualized the study. Farzaneh Hosseinzadeh and Mohsen Basavad conducted formal analysis and investigation. Mohsen Basavad was responsible for writing the original draft. Farhad Shahriari Nogorani, Hooman Shokrollahi, and Mohsen Basavad performed writing review and editing, preparing the final version. All authors read and approved the final manuscript.

Corresponding author

Correspondence to M. Basavad.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors declare the following financial interests/personal relationships which may be considered as potential competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseinzadeh, F., Basavad, M., Shokrollahi, H. et al. Synthesis and characterization of Eu, Pr-doped garnet with augmented Ce solubility via controlled Fe2O3 reduction. Appl. Phys. A 130, 301 (2024). https://doi.org/10.1007/s00339-024-07448-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07448-0

Keywords

Navigation