Skip to main content
Log in

The behavior of high frequency tunable dielectric resonator antenna (DRA) with the addition of excess Fe2O3 in Y3Fe5O12 (YIG) formulation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This manuscript discusses the potential of yttrium iron garnet (YIG) with various amounts of Fe2O3 excess, as a tunable dielectric resonator antenna. The exploration of YIG’s antenna microwave properties is a key to determine stability of the antenna radiation pattern and frequency shifting. YIG with various amounts of excess Fe2O3 is prepared through a mixed oxide powder technique. Through X-ray diffraction analysis, it was found that addition of 5 wt% excess Fe2O3 to YIG stoichiometric formulation has depleted YIP phases in YIG ceramics. However, increasing amount of excess Fe2O3 in excess of 15 wt% led to increase in the Fe2O3 residue in YIG ceramics. The grains observed using high resolution electron microscopy displayed a well-packed structure. The size of the grains became bigger when the percentage of Fe2O3 increased to 20 % but accompanied with significant changes in electrical properties. This change has led to a frequency shift from 14.14 to 17.32 GHz, which cover applications within the Ku-band (12.00–18.00 GHz) together with radiation stability. These results imply that inclusion of excess Fe2O3 can be used for tunable DRA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.T. Sebastian, Dielectric Materials for Wireless Communication, 1st edn. (Elsevier B.V, Amsterdam, 2008), pp. 5–15

    Google Scholar 

  2. W. Liu, G. Wang, S. Cao, C. Mao, F. Cao, J. Am. Ceram. Soc. 93, 9 (2010)

    Google Scholar 

  3. W. Wang, H. Zhou, X. Chen, X. Liu, L. Fang, C. Wang, and F. He, J. Mater. Sci. Mater. Electron. (2013). doi:1007/s10854-013-1150-1

  4. L. Li, X.M. Chen, Ceram. Int. 38, 8 (2012)

    Google Scholar 

  5. L.C. Kretly, A.F.L. Almeida, P.B.A. Fechine, R.S. De Oliveira, A.S.B. Sombra, J. Mater. Sci. Mater. Electron. 15, 657–663 (2004)

    Google Scholar 

  6. Y.-C. Chen, K.-C. Chang, D.-Y. Tsai, Ceram. Int. 39, 7 (2013)

    Google Scholar 

  7. S.A. Rezaeieh, S. Simsek, J. Pourahmadazar, Microw. Opt. Technol, Lett. 55, 2 (2013)

    Google Scholar 

  8. H. Raggad, M. Latrach, A. Gharsallah, T. Razban, Int. J. Comput. Netw. Commun. 5, 3 (2013)

    Google Scholar 

  9. G.D. Makwana, K.J. Vinoy, Prog. Electromagnet. Res. C. 11, 69–79 (2009)

    Google Scholar 

  10. J.L. Volakis, Antenna Engineering Handbook, 4th edn. (The McGraw-Hill Companies. New York, 2007), pp. 1-3, 4-1

  11. A. Petosa, Dielectric Resonator Antenna Handbook, 1st edn edn. (Artech House, Inc., Norwood, 2007), pp. 1–46

    Google Scholar 

  12. Z. Peng, H. Wang, X. Yao, Ceram. Int. 30, 7 (2004)

    Google Scholar 

  13. A. Petosa, A. Ittipiboon, IEEE Antenna Propag. Mag. 52, 5 (2010)

    Article  Google Scholar 

  14. M. Liao, Q. Li, L. Ren, X. Yu, X. Guo, D. Wang, J. Am. Ceram. Soc. 95, 11 (2012)

    Google Scholar 

  15. A. Petosa, M. Cuhaci, J.S. Wight, Electron. lett. 30(13), 1021–1022 (1994)

    Google Scholar 

  16. O. Siddiqui, A.K. Iyer, M. Devincentis, C. Caloz, T. Itoh, W.J. Padilla, D.C. Vier, S. Schultz, P. Society, I. Symposium, Y. Zhang, Microw. Opt. Technol. Lett. 51, 6 (2009)

    Article  Google Scholar 

  17. I.S. Ghosh, A. Hilgers, T. Schlenker, J. Eur. Ceram. Soc. 21, 15 (2001)

    Article  Google Scholar 

  18. M. Gustafsson, S. Nordebo, Prog. Electromag. Res. 62, 1–21 (2006)

    Article  Google Scholar 

  19. F. Minghao, H. Juntong, H. Zhaohui, L. Yangai, J. Bin, P. Peng, Key Eng. Mater. 72, 588–590 (2008)

    Google Scholar 

  20. Y.C. Chen, S.M. Tsao, C.S. Wang, S.C. Chien, Y.H. Chien, J Alloys Compd. 471, 1–2 (2009)

    Article  Google Scholar 

  21. J. Wang, S.H. Zheng, R. Zeng, S. Xudong, J. Am. Ceram. Soc. 92, 6 (2009)

    Google Scholar 

  22. X. Yang, X. Wang, G. Yao, A. Ji, J. Kim, and L. Li, J. Mater. Sci. Mater. Electron. (2013). doi:10.1007/s10854-013-1458-x

  23. A. Kotnala, P. Juyal, A. Mittal, A. De, Prog. Electromagn. Res. B. 42, 141–161 (2012)

    Google Scholar 

  24. L. Tang, J. Wang, J. Zhai, B. Shen, and X. Yao, J. Mater. Sci. Mater. Electron. (2009). doi:10.1007/s10854-013-1136-z

  25. R. Liang, X. Dong, Y. Chen, F. Cao, Y. Wang, Ceram. Int. 33, 6 (2007)

    Article  Google Scholar 

  26. M. Zhang, J. Zhai, X. Yao, Ceram. Int. 38, 1 (2012)

    Article  Google Scholar 

  27. J. Wang, H. Zhou, J. Liu, S. Jin, L. Sun, J. Zhang, Ceram. Int. 38, 4 (2012)

    Google Scholar 

  28. S. Yun, D.Y. Kim, S. Nam, IEEE Antennas Wirel. Propag. Lett. 11, 1092–1095 (2012)

  29. J. YeO, Y. Lee, R. Mittra, Microw. Antennas Propag. IEE Proc. 155, 4 (2004)

    Google Scholar 

  30. Kin-Lu Wong, Kai-Ping Yang, Electron. Lett. 33, 23 (1997)

    Article  Google Scholar 

  31. P.P.S.S. Sarkar, A. Ray, M. Kahar, S. Biswas, D. Sarkar, Int. J. Soft Comput. Eng. 1, 6 (2012)

    Google Scholar 

  32. M.A. Khir, M.H. Zakariya, M.F. Ain, M. Othman, Frequency tuning for compact cylindrical dielectric resonator antenna (CDRA). In: National Postgraduate Conference (NPC ‘11), (2011), pp 1–5

  33. R.K. Gangwar, G.L.N. Rao, J Alloys Compd. 509, 42 (2011)

    Article  Google Scholar 

  34. N.A. Rejab, S. Sreekantan, K. Abd Razak, Z.A. Ahmad, J. Mater. Sci. Mater. Electron. 22, 2 (2010)

    Google Scholar 

  35. P.K. Petrov, N. Alford, Electron. Lett. 37, 17 (2001)

    Article  Google Scholar 

  36. P.B.A. Fechine, R.S.T. Moretzsohn, R.C.S. Costa, J. Derov, J.W. Stewart, A.J. Drehman, C. Junqueira, A.S.B. Sombra, Microw. Opt. Technol. Lett. 50, 11 (2008)

    Article  Google Scholar 

  37. G.F. Dionne, D.E. Oates, J. Appl. Phys. 111, 7 (2012)

    Article  Google Scholar 

  38. L. Sirdeshmukh, K.K. Kumar, S.B. Laxman, Bull. Mater. Sci. 21, 3 (1998)

    Article  Google Scholar 

  39. P.B. Fechine, H.H.B. Rocha, R.S.T. Moretzsohn, J.C. Denardin, R. Lavín, S.B. Sombra, IET Microw. Antennas Propag. 3, 8 (2009)

    Article  Google Scholar 

  40. W.F.F Wan Ali, N.A. Rejab, M.A. Othman, M.F. Ain, Z.A. Ahmad, J. Sol-Gel Sci. Tech. 61(2), 411–420 (2012)

  41. C. M. Hadzer and J. T. Sambanthan, IEEE Trans. Antennas Propag., 3 (1973)

  42. M.K. Sliety, D.N. Aloi, Microw. Antennas Propag. 2, 2 (2008)

    Article  Google Scholar 

  43. P. Scardi, L.B. Mccusker, R.B. Von Dreele, D.E. Cox, D. Loue, J. Appl. Phys. 32, 1 (1999)

    Google Scholar 

  44. R. Guinebretiere, X-Ray Diffraction by Polycrystalline Materials, 1st edn. (Lavoisier Ltd, London, 2002)

    Google Scholar 

  45. D. Guha, C. Kumar, IEEE Trans. Antennas Propag. 60, 1 (2012)

    Google Scholar 

  46. W. F. F. Wan Ali, M. Othman, M.F. Ain, N.S. Abdullah, and Z.A. Ahmad, J. Eur. Ceram. Soc., 33, 7 (2013)

    Google Scholar 

  47. C. Bottino, M. Leoni, P. Nanni, Acta Metall. 45, 3 (1997)

    Google Scholar 

  48. A. Sztaniszlav, E. Sterk, L. Fetter, M. Farkasjahnke, J. Labar, J. Magn. Magn. Mater. 41, 1–33 (1984)

    Article  Google Scholar 

  49. A.C. Antunes, S.R.M. Antunes, A.J. Zara, S.A. Pianaro, J. Mater. Sci. 37, 12 (2002)

    Article  Google Scholar 

  50. G.R. Mohan, D. Ravinder, A.V.R. Reddy, B.S. Boyanov, Mater. Lett. 40, 1 (1999)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the research university team Grant (RUT) 1001/PELECT/854004 and the postgraduate research Grant scheme (PGRS) 1001/PBAHAN/8045017 from Universiti Sains Malaysia. The authors appreciate the financial support given under the MyBrain scholarship program from the Malaysian Ministry of Higher Education (Ref. No. KPT/B/870611295637), and are also grateful to Mr. Sharul Ami Zainal Abidin, and Mr Abdul Latif Hamid for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zainal Arifin Ahmad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, W.F.F.W., Othman, M., Ain, M.F. et al. The behavior of high frequency tunable dielectric resonator antenna (DRA) with the addition of excess Fe2O3 in Y3Fe5O12 (YIG) formulation. J Mater Sci: Mater Electron 25, 560–572 (2014). https://doi.org/10.1007/s10854-013-1624-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1624-1

Keywords

Navigation