Skip to main content
Log in

Structural and Magnetic Studies of Aluminum Substituted YIG Nanoparticles Prepared by a Sol-Gel Route

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The aluminum substituted Yttrium Iron Garnet nanoparticles were synthesized by sol-gel route followed by annealing at 700°C and 900°C for 3 and 2 h respectively. The XRD patterns of all the samples confirmed the single-phase and well-defined garnet structure at 900°C. The average crystallite size of the samples calculated using Scherrer formula was found in the range of 56–69 nm. The lattice parameter and d-spacing were found to decrease with increasing aluminum content due to the smaller ionic size of the Al3+ cation. FTIR spectra confirmed the garnet phase formation and showed stretching mode of YIG tetrahedron in the range of 552–657 cm−1. It was observed from hysteresis loops that the saturation magnetization (Ms) values decreased from 20.69 emu/g to 3.09 emu/g with increasing aluminum content. Electron spin resonance (ESR) study showed the broadening of a peak to peak linewidth with increasing aluminum content. The minimum linewidth of 110 gauss was observed for YIG sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11.
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. H. Yang, G. Zhang, Y. Lin, T. Ye, P. Kang, Electrical, magnetic and magnetoelectric properties of BaTiO3/BiY2Fe5O12 particulate composites. Ceram. Int. 41(5), 7227–7232 (2015). https://doi.org/10.1016/j.ceramint.2015.01.139

  2. M. Bonnet, A. Delapalme, Acta. Cryst. B 31, (1975). https://doi.org/10.1107/S0567740875007315

  3. S. Geller, M.A. Gilleo, Phys. Rev. 110, 73 (1958). https://doi.org/10.1103/PhysRev.110.73

  4. Lataifeh, M.S. Appl. Phys. A 92, 681 (2008). https://doi.org/10.1007/s00339-008-4616-x

  5. H. Ahmad, N. Mohammad, Z. Sirus, World Appl. Sci. J. 19(3), 424–430 (2012)

    Google Scholar 

  6. Wang, Lili & Huang, Zhigao & Zhang, Huiqin & Yu, Ruibing. (2015). Phase and magnetic properties evolutions of Y3-x(CaZr)xFe5-xO12 by the sol-gel method. Journal of Magnetism and Magnetic Materials. 395, 73–80. https://doi.org/10.1016/j.jmmm.2015.07.025 

  7. Pardavihorvath, Martha Microwave Applications of Soft Ferrites. Journal of Magnetism and Magnetic Materials. 215–216, 171–183 (2000). https://doi.org/10.1016/S0304-8853(00)00106-2

  8. K. Praveena, S. Srinath, Effect of Gd3+ on dielectric and magnetic properties of Y3Fe5O12. J. Magn. Magn. Mater. 349, 45–50 (2014) https://doi.org/10.1016/j.jmmm.2013.08.035

  9. T. Ramesh, P. Raju, R.S. Shinde, S.R. Murthy, Int. J. ChemTech Res. 7(2), 539–546 (2014–2015)

    Google Scholar 

  10. T. Ramesh, R.S. Shinde, S.R. Murthy, Nanocrystalline gadolinium iron garnet for circulator applications. J. Magn. Magn. Mater. 324, 3668–3673 (2012). https://doi.org/10.1016/j.jmmm.2012.05.029

  11. Douglas Adam, J & E. Davis, Lionel & Dionne, Gerald & F. Schloemann, Ernst & N. Stitzer, Steven. Ferrite Devices and Materials. IEEE Transactions on Microwave Theory and Techniques. 50(3), 721–737 (2002). https://doi.org/10.1109/22.989957

  12. J.-P. Gannea, R. Lebourgeois, M. Pat, D. Dubreuil, L. Pinier, H. Pascard, J. Eur. Ceram. Soc. 27, 2771–2777 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.11.054

  13. E.J.J. Mallmann et al., "Yttrium Iron Garnet: Properties and Applications Review", Solid State Phenomena. 202, 65–96 (2013). https://doi.org/10.4028/www.scientific.net/SSP.202.65

  14. W.F.F.W. Ali, H.H. Jaafar, M.F. Ain, N.S. Abdullah, Z.A. Ahmad, J. Mater. Sci.: Mater. Electron. https://doi.org/10.1007/s10854-014-2428-7

  15. F. Grasset, S. Mornet, A. Demourgues, J. Portier, J. Bonnet, A. Vekris, E. Dugue, Synthesis, magnetic properties, surface modification and cytotoxicity evaluation of Y3Fe5−xAlxO12 (0⩽x⩽2) garnet submicron particles for biomedical applications. J. Magn. Magn. Mater. 234, 409–418 (2001). https://doi.org/10.1016/S0304-8853(01)00386-9

  16. J. Giri, A. Ray, S. Dasgupta, D. Datta, D. Bahadur, Investigation on Tc tuned nano particles of magnetic oxides for hyperthermia applications. Biomed. Mater. Eng. 13(4), 387–399 (2003)

    Google Scholar 

  17. Cheng, Z. & Yang, H. J Mater Sci: Mater Electron (2007) 18: 1065. https://doi.org/10.1007/s10854-007-9130-y

  18. Y.Y. Song, S.C. Yu, W.T. Kim, J.R. Park, T.H. Kim, The effect of Bi2O3 addition on the microstructure and magnetic properties of YIG. J. Magn. Magn. Mater. 177-181, 257–258 (1998), https://doi.org/10.1016/S0304-8853(97)00863-9

  19. Z. Cheng, Y. Cui, H. Yang, Y. Chen, J. Nanopart. Res. 11, 1185–1192 (2009). https://doi.org/10.1007/s11051-008-9501-1

    Article  ADS  Google Scholar 

  20. R. Nazlan, M. Hashim, I.R. Ibrahim, F.M. Idris, I. Ismail, W.N.W.A. Rahman, N.H. Abdullah, M.M.M. Zulkimi, M.S. Mustaffa, J. Phys. Chem. Solids 85, 1–12 (2015), https://doi.org/10.1016/j.jpcs.2015.04.011

  21. M.A. Musa, R.S. Azis, N.H. Osman, J. Hassan, M.M. Dihom, J. Aust. Ceram. Soc. https://doi.org/10.1007/s41779-017-0126-7

  22. M. Zeng, 370–375. J. Magn. Magn. Mater. 393, 370–375 (2015). https://doi.org/10.1016/j.jmmm.2015.05.082

    Article  ADS  Google Scholar 

  23. Z. Azadi Motlagh, M. Mozaffari, J. Amighian, J. Magn. Magn. Mater. 321, 1980–1984 (2009). https://doi.org/10.1016/j.jmmm.2008.12.025

    Article  ADS  Google Scholar 

  24. M.N. Akhtar, A.B. Sulong, M.A. Khan, M. Ahmad, G. Murtaza, M.R. Raza, R. Raza, M. Saleem, M. Kashif, J. Magn. Magn. Mater. https://doi.org/10.1016/j.jmmm.2015.10.060

  25. Q.I. Mohaidat, M. Lataifeh, K. Hamasha, S.H. Mahmood, I. Bsoul, M. Awawdeh, Mater. Res. (2018). https://doi.org/10.1590/1980-5373-MR-2017-0808

  26. Sadhana, K., Murthy, S.R. & Praveena, K. J Mater Sci: Mater Electron 25, 5130 (2014). https://doi.org/10.1007/s10854-014-2282-7

  27. M. Pal, D. Chakravorty, Phys. E. 5, 200–203 (2000)

    Article  Google Scholar 

  28. M. Paz Vaqueiro, A. Lo’pez-Quintela, J. Rivas, J. Mater. Chem. 7(3), 501–504 (1997). https://doi.org/10.1039/A605403J

  29. Kimura, Teiichi & Takizawa, Hirotsugu & Uheda, Kyota & Endo, Tadashi & Shimada, Masahiko. Microwave Synthesis of Yttrium Iron Garnet Powder. Journal of the American Ceramic Society. 81, 2961–2964 (2005). https://doi.org/10.1111/j.1151-2916.1998.tb02720.x

  30. V. Sharma, J. Saha, S. Patnaik, B.K. Kuanr, Synthesis and characterization of yttrium iron garnet (YIG) nanoparticles - Microwave material. AIP Adv. 7, 056405 (2017). https://doi.org/10.1063/1.4973199

  31. Hapishah, A.N., Hashim, M., Syazwan, M.M. et al. J Mater Sci: Mater Electron 28, 15270 (2017). https://doi.org/10.1007/s10854-017-7407-3

  32. M. Kurian, D.S. Nair, J. Saudi Chem. Soc. 20, S517–S522 (2016)

    Article  Google Scholar 

  33. A.H. Azizan, R.’a.S. Azis, J. Hassan, M. Hashim, N.M. Mohd, N.D. Shahrani, S. Sulaiman, N.N.C. Muda, J. Makiyyu Abdullahi Musa, Solid State Sci. Technol. Lett. 16(1–2), 58–61 (2015)

    Google Scholar 

  34. P.P.S. Ortega, M.A. Ramirez, C.R. Foschini, F.G. Garcia, M. Cilense, A.Z. Simões, Process. Appl. Ceram. 8(4), 211–218 (2014) https://doi.org/10.2298/PAC1404211O

    Article  Google Scholar 

  35. A.V. Anupama, R. Kumar, H.K. Choudhary, B. Sahoo, Ceram. Int. https://doi.org/10.1016/j.ceramint.2017.11.059

  36. M. Cohen, H & A. Chegwidden, R. Control of the Electromagnetic Properties of the Polycrystalline Garnet Y3Fe3.75Al1.25O12. J. Appl. Phys. 37, 1081–1082 (1966). https://doi.org/10.1063/1.1708343

  37. Yahya, Noorhana & Al-Habashi, Ramadan & Koziol, Krzysztof & Dunin-Borkowski, Rafal & Akhtar, Majid & Kashif, Muhammad & Hashim, Mansor. Morphology and Magnetic Characterisation of Aluminium Substituted Yttrium-Iron Garnet Nanoparticles Prepared Using Sol Gel Technique. Journal of nanoscience and nanotechnology. 11, 2652–6 (2011). https://doi.org/10.1166/jnn.2011.2723

  38. K. Sadhana, S.E. Naina Vinodini, R. Sandhya, K. Praveena, Adv. Mater. Lett. 6(8), 717–725 2015. https://doi.org/10.5185/amlett.2015.5874

  39. Chun Yan Song, Jinbao Xu, Aerpati Yimamu & Lei Wang Hydrothermal Synthesis of Perovskite Bismuth Ferrite Micro/Nano Powders, Integrated Ferroelectrics, 153(1), 33–41 (2014). https://doi.org/10.1080/10584587.2014.902668

  40. I. Yarici, M. Erol, E. Celik, Y. Ozturk, Effect of pH and annealing temperature on the structural and magnetic properties of cerium-substituted yttrium iron garnet powders produced by the sol-gel method. Mater. Sci. Pol. 34(2), 362–367 (2016). https://doi.org/10.1515/msp-2016-0036

  41. N. Yahya, R.A.H. Masoud, H. Daud, A.A. Aziz, H.M. Zaid, Am. J. Eng. Appl. Sci. 2(1), 76–79 (2009)

    Article  Google Scholar 

  42. Z. Cheng, H. Yang, L. Yu, Y. Cui, S. Feng, Preparation and magnetic properties of Y3Fe5O12 nanoparticles doped with the gadolinium oxide. J. Magn. Magn. Mater. 302, 259–262 (2006). https://doi.org/10.1016/j.jmmm.2005.09.015

  43. J.Y. Kadam, A.V. Humbe, P.P. Khirade, S.D. Birajdar, R.G. Dorik, Int. J. Eng. Sci. Res. Technol. 6.7, 642–647. Web. 15 July 2017 (2017). https://doi.org/10.5281/zenodo.829811

    Google Scholar 

  44. R.C. Kambale, P.A. Shaikh, S.S. Kamble, Y.D. Kolekar, Effect of cobalt substitution on structural, magnetic and electric properties of nickel ferrite. J. Alloys Compd. 478, 599–603 (2009). https://doi.org/10.1016/j.jallcom.2008.11.101 

  45. Kuchi, Rambabu & Kim, Sang-II & Lee, Kyungsub & Lee, Yelim & Park, Seung-Young & Jeong, Jong-Ryul. Annealing Effect on Ferromagnetic Resonance and Magnetic Properties of YIG Nanocrystals Prepared by Citrate Precursor Sol-Gel Method. Nanoscience and Nanotechnology Letters. 7, 738–742 (2015). https://doi.org/10.1166/nnl.2015.2019

  46. N.V. Stashko, V.D. Fedoriv, I.P. Yaremiy, M.L. Mokhnatskyi, Int. J. Eng. Tech. Res. 3(3), (2015)

  47. Sánchez, R. D., Rivas, J., Vaqueiro, P., López-Quintela, M. A., & Caeiro, D. Particle size effects on magnetic properties of yttrium iron garnets prepared by a sol-gel method. Journal of Magnetism and Magnetic Materials, 247(1), 92–98 (2002). https://doi.org/10.1016/S0304-8853(02)00170-1

  48. Z. Azadi Motlagh, M. Mozaffari, J. Amighian, A.F. Lehlooh, M. Awawdeh, S. Mahmood, Hyperfine Interact.. https://doi.org/10.1007/s10751-010-0234-z

  49. M.N. Akhtar, M. Yousaf, S.N. Khan, M.S. Nazir, M. Ahmad, M.A. Khan, Ceram. Int. https://doi.org/10.1016/j.ceramint.2017.09.115

  50. J.P. Singh, R.C. Srivastava, H.M.Agrawal, R.P.S. Kushwaha, Int. J. Nanosci. 7(1), 21–27 (2008). https://doi.org/10.1142/S0219581X08005146

  51. L. Kumar, M. Kar, Influence of Al3+ion concentration on the crystal structure and magnetic anisotropy of nanocrystalline spinel cobalt ferrite. J. Magn. Magn. Mater. 323, 2042–2048 (2011). https://doi.org/10.1016/j.jmmm.2011.03.010

  52. Montiel, H., Alvarez, G., Conde Gallardo, A., & Zamorano, R. Effect of the particle size on the microwave absorption in the Yttrium-iron garnet. Journal of Nano Research. 28, 73–81 (2014). https://doi.org/10.4028/www.scientific.net/JNanoR.28.73

  53. R.D. Sanchez, C.A. Ramos, J. Rivas, P. Vaqueiro, M.A. Lopez-Quintela, Ferromagnetic resonance and magnetic properties of single-domain particles of Y3Fe5O12 prepared by sol–gel method. Physica B 354, 104–107 (2004). https://doi.org/10.1016/j.physb.2004.09.028

  54. A. Abragam and B. Bleaney, Clarendon Press, Oxford, 1970

Download references

Acknowledgements

The authors would like to thank SAIF, Madras and Bombay for characterizations of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Bhalekar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhalekar, A.R., Singh, L.N. Structural and Magnetic Studies of Aluminum Substituted YIG Nanoparticles Prepared by a Sol-Gel Route. Braz J Phys 49, 636–645 (2019). https://doi.org/10.1007/s13538-019-00690-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-019-00690-5

Keywords

Navigation