Skip to main content

Advertisement

Log in

Influence of Gd3+ substitution and preparation technique on the optical and dielectric properties of Y3Fe5O12 garnet synthesized by standard ceramic and coprecipitation methods

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Micro-size and nano-size samples of (GdxY3−xFe5O12; x = 0, 0.25, 0.5, 0.75, and 1) garnet ferrites were prepared by the standard ceramic method (CER) and the coprecipitation (COP) method. The influences of Gd3+ doping and preparation methods on the optical and dielectric properties were compared for these micro-size and nano-size compositions for the first time. X-ray diffraction data confirmed the formation of a single phase of the garnet cubic structure for all samples. It was found that there is a good agreement between the theoretical and experimental lattice parameter estimated values. The Fourier transform infrared spectroscopy was used to study the cation distributions among the different crystallographic sites. Moreover, values of energy gap (Eg) for the investigated samples were determined from the diffused reflectance spectroscopy measurements. These values were found to be higher for (COP) samples than for (CER) ones and slightly increased by increasing Gd3+ content in both series prepared via the two techniques. Furthermore, resistivity (ρac), dielectric constant (ε′), and dielectric loss (ε″) showed a decrease with increasing frequency (f) for all samples. For the samples prepared by (CER) method, ρac increases with increasing Gd3+ content while for the samples prepared by (COP) method, ρac increases for 0 ≤ x ≤ 1 except for the sample x = 0.5. Values of ρac for samples prepared by (COP) method are higher than those prepared by (CER) method. Both ε′ and ε″ had the reverse behavior of ρac. Obtained results were explained according to different models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H. Jin, S.R. Boona, Z. Yang, R.C. Myers, J.P. Heremans, Phys. Rev. B 92, 1 (2015)

    Google Scholar 

  2. S. Tao, H. Chao, D. Hailong, Y. Wenlong, L. Hongchen, W. Xinlao, Mater. Sci. Poland 33, 169 (2018)

    Google Scholar 

  3. B. Raneesh, I. Rejeena, P.U. Rehana, P. Radhakrishnan, Ceram. Int. 38, 1823 (2012)

    CAS  Google Scholar 

  4. H.K. Jung, C.H. Kim, A.R. Hong, S.H. Lee, T.C. Kim, H.S. Jang, D.H. Kim, Ceram. Int. 45, 9846 (2019)

    CAS  Google Scholar 

  5. A. Goldman, Modern Ferrite Technology, 2nd edn. (Springer, Pittsburg, 2006)

    Google Scholar 

  6. S. Aakansha, S. Ravi, Solid State Commun. 300, 113690 (2019)

    CAS  Google Scholar 

  7. S. Aakansha, S. Ravi, Appl. Phys. Mater. Sci. Process. 125, 1 (2019)

    Google Scholar 

  8. Y.S. Cho, V.L. Burdick, V.R.W. Amarakoon, J. Am. Ceram. Soc. 80, 1605 (2005)

    Google Scholar 

  9. P. Grosseau, A. Bachiorrini, B. Guilhot, Powder Technol. 93, 247 (1997)

    CAS  Google Scholar 

  10. L. Sirdeshmukh, K. Krishna Kumar, S. Bal Laxman, A. Rama Krishna, G. Sathaiah, Bull. Mater. Sci. 21, 219 (1998)

    CAS  Google Scholar 

  11. T. Ramesh, R.S. Shinde, S.R. Murthy, J. Magn. Magn. Mater. 324, 3668 (2012)

    CAS  Google Scholar 

  12. R.A. Serra, T. Ogasawara, A.S. Ogasawara, Quím. Nova 30, 1545 (2007)

    CAS  Google Scholar 

  13. F. Nanni, F.R. Lamastra, A. Bianco, F. Leonardi, G. Gusmano, Int. J. Appl. Ceram. Technol. 5, 624 (2008)

    CAS  Google Scholar 

  14. H.M. El-Sayed, W.R. Agami, J. Mater. Sci. Mater. Electron. 27, 4866 (2016)

    CAS  Google Scholar 

  15. W.R. Agami, M.A. Ashmawy, A.A. Sattar, J. Mater. Eng. Perform. 23, 604 (2014)

    CAS  Google Scholar 

  16. A.A. Sattar, H.M. El-Sayed, W.R. Agami, Phys. Status Solidi (A) 205, 2716 (2008)

    CAS  Google Scholar 

  17. B. Strocka, P. Holst, W. Tolksdorf, Philips J. Res. 33, 186 (1978)

    CAS  Google Scholar 

  18. B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials (Wiley, Hoboken, 2009)

    Google Scholar 

  19. H. Xu, H. Yang, Phys. Status Solidi (A) 204, 1203 (2007)

    CAS  Google Scholar 

  20. R.D. Shannon, Acta Crystallogr. A 32, 751 (1976)

    Google Scholar 

  21. J. Su, X. Lu, C. Zhang, J. Zhang, S. Peng, X. Wu, K. Min, F. Huang, J. Zhu, J. Mater. Sci. 46, 3488 (2011)

    CAS  Google Scholar 

  22. M. Rajendran, S. Deka, P.A. Joy, A.K. Bhattacharya, J. Magn. Magn. Mater. 301, 212 (2006)

    CAS  Google Scholar 

  23. P. Ayyub, V.R. Palkar, S. Chattopadhyay, M. Multani, Phys. Rev. B 51, 6135 (1995)

    CAS  Google Scholar 

  24. A.A. Sattar, H.M. El-Sayed, M.M. El-Tabey, J. Mater. Sci. 40, 4873 (2005)

    CAS  Google Scholar 

  25. Z. Cheng, H. Yang, L. Yu, Y. Cui, S. Feng, J. Magn. Magn. Mater. 302, 259 (2006)

    CAS  Google Scholar 

  26. B.J. Evans, S.S. Hafner, J. Phys. Chem. Solids 29, 1573 (1968)

    CAS  Google Scholar 

  27. L. Yu, J. Wang, S. Cao, S. Yuan, J. Zhang, J. Mater. Sci. 42, 5335 (2007)

    CAS  Google Scholar 

  28. S.R. Naik, A.V. Salker, J. Alloys Compd. 600, 137 (2014)

    CAS  Google Scholar 

  29. E. Hild, E. Beregi, Period. Polytechn. Chem. Eng. 30, 235 (1986)

    CAS  Google Scholar 

  30. M. Niyaifar, H. Mohammadpour, A. Behmanesh, J. Alloys Compd. 683, 495 (2016)

    CAS  Google Scholar 

  31. D.M. Hemeda, A. Tawfik, O.M. Hemeda, S.M. Dewidar, Solid State Sci. 11, 1350 (2009)

    CAS  Google Scholar 

  32. R.D. Waldron, Phys. Rev. 99, 1727 (1955)

    CAS  Google Scholar 

  33. Y. Kim, S.J. Atherton, E.S. Brigham, T.E. Mallouk, J. Phys. Chem. 97, 11802 (1993)

    CAS  Google Scholar 

  34. A.B. Murphy, Sol. Energy Mater. Sol. Cells 91, 1326 (2007)

    CAS  Google Scholar 

  35. K. Nama Manjunatha, S. Paul, Appl. Surf. Sci. 352, 10 (2015)

    CAS  Google Scholar 

  36. G.B. Scott, J.L. Page, Phys. Status Solidi (B) 79, 203 (1977)

    CAS  Google Scholar 

  37. P. Hansen, J.-P. Krumme, Thin Solid Films 114, 69 (1984)

    CAS  Google Scholar 

  38. R. López, R. Gómez, J. Sol Gel. Sci. Technol. 61, 1 (2012)

    Google Scholar 

  39. R. Banerjee, R. Jayakrishnan, P. Ayyub, J. Phys. Condens. Matter 12, 10647 (2000)

    CAS  Google Scholar 

  40. K. Sadhana, S.R. Murthy, K. Praveena, J. Mater. Sci. Mater. Electron. 25, 5130 (2014)

    CAS  Google Scholar 

  41. S. Geller, H.J. Williams, R.C. Sherwood, G.P. Espinosa, J. Phys. Chem. Solids 23, 1525 (1962)

    CAS  Google Scholar 

  42. K.B. Modi, R.P. Vara, H.G. Vora, M.C. Chhantbar, H.H. Joshi, J. Mater. Sci. 39, 2187 (2004)

    CAS  Google Scholar 

  43. C.G. Koops, Phys. Rev. 83, 121 (1951)

    CAS  Google Scholar 

  44. J.B. Goodenough, P.E. Tannenwald, Solid State Electron. 7, 556 (1964)

    Google Scholar 

  45. H. Zhao, J. Zhou, Y. Bai, Z. Gui, L. Li, J. Magn. Magn. Mater. 280, 208 (2004)

    CAS  Google Scholar 

  46. G. Ranga Mohan, D. Ravinder, A.V. Ramana, Reddy, B.S. Boyanov, Mater. Lett. 40, 39 (1999)

    CAS  Google Scholar 

  47. Ü Özgür, Y. Alivov, H. Morkoç, J. Mater. Sci. Mater. Electron. 20, 789 (2009)

    Google Scholar 

  48. T.M. Meaz, S.M. Attia, A. El Ata, J. Magn. Magn. Mater. 257, 296 (2003)

    CAS  Google Scholar 

  49. A. Lipare, P. Vasambekar, A. Vaingankar, J. Magn. Magn. Mater. 279, 160 (2004)

    CAS  Google Scholar 

  50. D. Bahadur, O. Parkash, D. Kumar, Bull. Mater. Sci. 3, 325 (1981)

    CAS  Google Scholar 

  51. M.A. Ahmed, S.T. Bishay, S.I. El-Dek, Mater. Chem. Phys. 126, 780 (2011)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors express their deep thanks to Prof. Dr. A.A. Sattar and Prof. Dr. H.M. El-Sayed (Physics Department, Faculty of Science, Ain Shams University) for facilitating the preparation of samples and measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. R. Agami.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Ethical approval

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agami, W.R., Faramawy, A.M. Influence of Gd3+ substitution and preparation technique on the optical and dielectric properties of Y3Fe5O12 garnet synthesized by standard ceramic and coprecipitation methods. J Mater Sci: Mater Electron 31, 11654–11664 (2020). https://doi.org/10.1007/s10854-020-03717-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03717-9

Navigation