Skip to main content
Log in

Magnetic and robust dielectric properties in distorted double perovskite Gd2CuTiO6

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this article, we describe our research on the structural, morphological, dielectric, and magnetic properties of Gd2CuTiO6. This compound was synthesized using solid state reaction. It crystallizes in orthorhombic structure with the space group Pnma. An estimation of compressive and tensile strain is made using the Bond Valence Sums calculation. Moreover, the compound exhibits disorder in the B-site octahedra, octahedral tilting (18.35° along b axis) and substantial distortion in bond lengths which supports the existence of orthorhombic distortion. Cu/Ti atoms located at the center of symmetry in the unit cell of Gd2CuTiO6 do not contribute to Raman modes. Nonetheless stretching and bending vibrations of Gd-O1/O2 bonds result in 24 Raman active modes. Gd2CuTiO6 has a moderate dielectric constant of ~ 191 and a low dielectric loss of ~ 0.42 at 100 Hz at ambient temperature. The activation energy calculated using the Arrhenius equation is 0.31 eV. Magnetic susceptibility measured from room temperature down to 4 K showed a paramagnetic trend without any long range ordering. A Curie–Weiss fit to inverse paramagnetic susceptibility yielded an effective magnetic moment of 11.5 μB. By taking into account the individual magnetic moments of Gd3+ and Cu2+ ions, theory predicts that the effective magnetic moment to be 11.3 μB. The results reveal a good agreement between the observed and the theoretical effective magnetic moments. Field dependence of magnetization, M(H) at different temperatures indicated a second order phase transition at applied fields greater than ~ 1.2 T. Examination of M(H) curves using Brillouin function demonstrated the presence of a weak-ferromagnetic component below 20 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. S. Vasala, M. Karppinen, Prog. Solid. State Ch. 43, 1 (2015)

    Article  Google Scholar 

  2. A. Hossain, P. Bandyopadhyay, S. Roy, J. Alloys Compd 740, 414 (2018)

    Article  Google Scholar 

  3. M.T. Anderson, K.B. Greenwood, G.A. Taylor, K.R. Poeppelmeiert, Prog. Solid State Ch. 22, 197 (1993)

    Article  Google Scholar 

  4. T. Maiti, M. Saxena, P. Roy, J. Mater. Res. 34(1), 1 (2018)

    Google Scholar 

  5. B. Philipp, P. Majewski, L. Alff, A. Erb, R. Gross, T. Graf, S. Brandt, J. Simon, T. Walther, W. Mader, D. Topwal, D. Sarma, Phys. Rev. B 68, 144431 (2003)

    Article  ADS  Google Scholar 

  6. K.M. Rabe, M. Dawber, C. Lichtensteiger, C.H. Ahn, Physics of ferroelectrics: a modern perspective, 1st edn. (Spinger, Berlin, 2007), pp.8–9

    Google Scholar 

  7. K. Singh, N. Kumar, B. Singh, S.D. Kaushik, N.K. Gaur, S. Bhattacharya, S. Rayaprol, C. Simon, J. Supercond. Nov. Magn. 24, 1829 (2011)

    Article  Google Scholar 

  8. A.I. Kingon, J.P. Maria, S.K. Streiffer, Nature 406, 1032 (2000)

    Article  Google Scholar 

  9. D. Choudhury, A. Hazarika, A. Venimadhav, C. Kakarla, K.T. Delaney, P.S. Devi, P. Mondal, R. Nirmala, J. Gopalakrishnan, N.A. Spaldin, U.V. Waghmare, D.D. Sarma, Phys. Rev. B 82, 134203 (2010)

    Article  ADS  Google Scholar 

  10. A.G. Monteduro, Z. Ameer, M. Martino, A.P. Caricato, V. Tasco, I.C. Lekshmi, R. Rinaldi, A. Hazarika, D. Choudhury, D.D. Sarma, G. Maruccio, J. Mater. Chem. C 4, 1080 (2016)

    Article  Google Scholar 

  11. D. Choudhury, D.D. Sarma, J. Vac. Sci. Technol. B 32(3), 03D118 (2014)

    Article  Google Scholar 

  12. W.Z. Yang, M.M. Mao, X.Q. Liu, X.M. Chen, J. Appl. Phys. 107, 124102 (2010)

    Article  ADS  Google Scholar 

  13. N. Kumar, K.S. Rao, A.K. Sahu, U.P. Deshpande, S.N. Achary, S.K. Deshpande, Mater. Chem. Phys. 286, 126203 (2022)

    Article  Google Scholar 

  14. N. Das, R. Singh, A. Das, L.C. Gupta, A.K. Ganguli, J. Solid State Chem. 253, 355 (2017)

    Article  ADS  Google Scholar 

  15. P. Saha, R. Nithya, A.T. Sathyanarayana, A. Das, K. Vinod, S. Karmakar, R. Rawat, J. Magn. Magn. Mater. 574, 170682 (2023)

    Article  Google Scholar 

  16. V.M. Goldschmidt, Sci. Nat. 14, 477 (1926)

    Article  Google Scholar 

  17. B.H. Toby, R.B. Von Dreele, J. Appl. Crystallogr. 46, 544 (2013)

    Article  Google Scholar 

  18. Z. Yang, W. Wong-Ng, J.A. Kaduk, M. Jang, G. Liu, J. Solid State Chem. 182, 1142 (2009)

    Article  ADS  Google Scholar 

  19. K. Momma, F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011)

    Article  Google Scholar 

  20. E. Kroumova, M.I. Aroyo, J.M. Perez-Mato, A. Kirov, C. Capillas, S. Ivantchev, H. Wondratschek, Ph. Transit. 76, 155 (2003)

    Article  Google Scholar 

  21. M.N. Iliev, M.V. Abrashev, H.-G. Lee, V.N. Popov, Y.Y. Sun, C. Thomsen, R.L. Meng, C.W. Chu, Phys. Rev. B 57, 2872 (1998)

    Article  ADS  Google Scholar 

  22. A. Schoenhals, F. Kremer, Broadband Dielectric Spectroscopy, 1st edn. (Springer-Verlag, Berlin, 2003), p.55

    Google Scholar 

  23. R. Datta, S.K. Pradhan, S. Chatterjee, S. Majumdar, S.K. De, J. Alloys Compd. 876, 160158 (2021)

    Article  Google Scholar 

  24. M.P.F. Graça, P.R. Prezas, M.M. Costa, M.A. Valente, J. Solgel Sci Technol. 64, 78 (2012)

    Article  Google Scholar 

  25. F. Ye, H. Dai, M. Wang, J. Chen, T. Li, Z. Chen, J. Mater. Sci.: Mater. Electron. 31, 3590 (2020)

    Google Scholar 

  26. K. Iben Nassar, N. Rammeh, S.S. Teixeira, M.P.F. Graca, J. Electron. Mater. 51, 370 (2022)

    Article  ADS  Google Scholar 

  27. K. Iben Nassar, M. Slimi, N. Rammeh, S.S. Teixeira, M.P.F. Graça, J. Mater. Sci. Mater. Electron. 33, 20134 (2022)

    Article  Google Scholar 

  28. K. Iben Nassar, N. Rammeh, S. Soreto Teixeira, M.P.F. Graca, Appl. Phys. A. 128, 373 (2022)

    Article  ADS  Google Scholar 

  29. S. Kundu, A. Hossain, P.K.S.R. Das, M. Baenitz, P.J. Baker, J.C. Orain, D.C. Joshi, R. Mathieu, P. Mahadevan, S. Pujari, S. Bhattacharjee, A.V. Mahajan, D.D. Sarma, Phys. Rev. Lett. 125, 117206 (2020)

    Article  ADS  Google Scholar 

  30. S. Rayaprol, S.D. Kaushik, N. Kumar, K. Singh, F. Guillou, C. Simon, AIP Conf. Proc. 1731, 130004 (2016)

    Article  Google Scholar 

  31. C. Kittel, Introduction to Solid State Physics, 8th edn. (Wiley, New York, 2005), pp.302–305

    Google Scholar 

  32. A. Arrott, Phys. Rev. 108, 1394 (1957)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. S. Amirthapandian, MSG, IGCAR for SEM measurements. The authors are thankful to Sujoy Sen, MSG, IGCAR for doing Raman measurements. The authors acknowledge UGC-DAE-CSR node at Kokilamedu for providing access to VSM facility.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

RN supervised the complete study, analyzed the data, performed the experiment and reviewed the manuscript. PS synthesized the sample, performed the experiments, analyzed the data and wrote the manuscript. RMS performed the dielectric measurements and edited the manuscript. ATS performed the magnetic measurements and edited the manuscript.

Corresponding author

Correspondence to R. Nithya.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, P., Nithya, R., Sarguna, R.M. et al. Magnetic and robust dielectric properties in distorted double perovskite Gd2CuTiO6. Appl. Phys. A 129, 624 (2023). https://doi.org/10.1007/s00339-023-06885-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06885-7

Keywords

Navigation