Skip to main content
Log in

Physical Properties, Complex Impedance, and Electrical Conductivity of Double Perovskite LaBa0.5Ag0.5FeMnO6

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Double perovskite oxide with general formula LaBa0.5Ag0.5FeMnO6 (LBAFMO) has been prepared by the sol–gel-based Pechini method. To study and compare its electrical properties, impedance spectroscopy was carried out in the temperature ranging from 200 K to 340 K and frequency range from 100 Hz to 1 MHz. At room temperature, x-ray diffraction analysis revealed the compound to be single phase and to crystallize in the cubic system in space group Pm-3m. The imaginary part of the impedance (Z″) as a function of frequency indicated non-Debye model relaxation. Impedance data in a Nyquist plot (Z″ versus Z′) was used to determine an equivalent circuit. The complex impedance of LBAFMO revealed the presence of grain and grain-boundary contributions. The alternating-current (AC) conductivity as a function of frequency was interpreted by applying Jonscher’s law to determine the activation energy. Modulus analysis revealed the occurrence of a relaxation process supplemented by a conduction phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.T. Anderson, K.B. Greenwood, G.A. Taylor, and K.R. Poeppelmeier, Prog. Solid State Chem. 22, 197 (1993).

    Article  CAS  Google Scholar 

  2. J.B. Philip et al., Phys. Rev. B 68, 144431 (2003).

    Article  Google Scholar 

  3. R. Ramesh, and N.A. Spaldin, Nat. Mater. 6, 21 (2007).

    Article  CAS  Google Scholar 

  4. M. Fiebig, and N.A. Spaldin, Eur. Phys. J. B. 71, 293 (2009).

    Article  CAS  Google Scholar 

  5. N.A. Spaldin, S.-W. Cheong, and R. Ramesh, Phys. Today 63, 38 (2010).

    Article  Google Scholar 

  6. M.B. Salomon, and M. Jaime, Rev. Mod. Phys. 73, 583 (2001).

    Article  Google Scholar 

  7. E.L. Nagaev, Phys. Rep. 346, 387 (2001).

    Article  CAS  Google Scholar 

  8. S. Jin, T.H. Tiefel, M. McCormack, R. Ramesh, and L.H. Chen, Science 264, 413 (1994).

    Article  CAS  Google Scholar 

  9. C. Zener, Phys. Rev. 82, 403 (1951).

    Article  CAS  Google Scholar 

  10. G. Jung, V. Markovich, Y. Yuzhelevski, M. Indenbom, C.J. van der Beek, D. Mogilyansky, and Ya.M. Mukovskii, J. Magn. Magn. Mater. 272–276, 1800 (2004).

    Article  CAS  Google Scholar 

  11. J. Gao, and F.X. Hu, Appl. Phys. Lett. 86, 092504 (2005).

    Article  Google Scholar 

  12. H. Rahmouni, B. Cherif, M. Baazaoui, and K. Khirouni, J. Alloys Compd. 575, 5 (2013).

    Article  CAS  Google Scholar 

  13. M.S. Sahasrabudhe, S.I. Patil, S.K. Date, D.P. Adhi, S.D. Kulkarni, P.A. Joy, and R.N. Bathe, Solid State Commun. 137, 595 (2006).

    Article  CAS  Google Scholar 

  14. P.G. De Gennes, Phys. Rev. 118, 141 (1960).

    Article  Google Scholar 

  15. A. BenHafsia, N. Rammeh, M. Farid, and M. Khitouni, Ceram. Int. 42, 3673 (2016).

    Article  Google Scholar 

  16. A. BenHafsia, M. Hendrickx, M. Batuk, M. Khitouni, J. Hadermann, J.-M. Greneche, and N. Rammeh, J. Solid State Chem. 251, 186 (2017).

    Article  CAS  Google Scholar 

  17. J. Rodriguez-Carvajal, A Program for Rietveld Refinement and Pattern Matching Analysis, Meeting on Powder Diffraction, Toulouse, France (1990).

  18. V.M. Goldschmidt, Geochemische Verteilungsgesetetze der Element VII, VIII (1927/1928).

  19. R.D. Shannon, Acta Crystallogr. Sect. A. 32, 751 (1976).

    Article  Google Scholar 

  20. M.D. Ingram, Phys. Chem. Glasses 28, 215 (1987).

    CAS  Google Scholar 

  21. F. Ramezanipour, B. Cowie, S. Derakhshan, J.E. Greedan, and L.M.D. Cranswick, J. Solid State Chem. 182, 153 (2009).

    Article  CAS  Google Scholar 

  22. E. Elbadraoui, J.L. Baudour, F. Bouree, B. Gillot, S. Fritsch, and A. Rousset, Cation Solid State Ionics 93, 219–225 (1997).

    Article  CAS  Google Scholar 

  23. H. Nefzi, F. Sediri, H. Hamzaoui, and N. Gharbi, Mater. Res. Bull. 48, 1978 (2013).

    Article  CAS  Google Scholar 

  24. Y. Liu, J. Wei, Y. Liu, X. Bai, P. Shi, S. Mao, X. Zhang, C. Li, and B. Dkhil, J. Mater. Sci. Mater. Electron 27, 3095–3102 (2016).

    Article  CAS  Google Scholar 

  25. V. Provenzano, L.P. Boesch, V. Volterra, C.T. Moynihan, and P.B. Macedo, J. Am. Ceram. Soc. 55, 492–496 (1972).

    Article  CAS  Google Scholar 

  26. Y. Olofsson, J. Groot, T. Katrašnik, G. Tavcar, in Electric Vehicle Conference (IEVC), 2014 IEEE International, pp. 1–6 (2014).

  27. M. Ganguli, M. Harish Bhat, and K.J. Rao, Phys. Chem. Glasses 40, 297 (1999).

    CAS  Google Scholar 

  28. F. Alvarez, and A. Alegría, J. Phys. Rev. B 47, 125 (1993).

    Article  CAS  Google Scholar 

  29. K.S. Cole, and R.H. Cole, J. Chem. Phys. 10, 98 (1942).

    Article  CAS  Google Scholar 

  30. K.S. Cole, and R.H. Cole, J. Chem. Phys. 9, 341 (1941).

    Article  CAS  Google Scholar 

  31. M.P.F. Graça, M.G.F. da Silva, A.S.B. Sombra, and M.A. Valente, J. Non-crystalline Solids 353, 4390 (2007).

    Article  Google Scholar 

  32. M.G.F. da Silva, A.S.B. Sombra, and M.A. Valente, J. Non-crystalline Solids 352, 5199–5204 (2006).

    Google Scholar 

  33. K.S. Cole, P.M. Krishna, D.M. Prasad, J.H. Lee, and J.S. Kim, J. Alloys Compd. 464, 497 (2008).

    Article  Google Scholar 

  34. M.P.F. Graça, P.R. Prezas, M.M. Costa, and M.A. Valente, J. Sol-Gel Sci. Technol. 64, 78 (2012).

    Article  Google Scholar 

  35. H. Kolodziej, and L. Sobczyk, Acta Phys. Pol. A 39, 59 (1971).

    CAS  Google Scholar 

  36. X. Qian, N. Gu, Z. Cheng, X. Yang, E. Wang, and S. Dong, Electrochim. Acta 46, 1829 (2001).

    Article  CAS  Google Scholar 

  37. F.S. Howell, R.A. Bose, P.B. Macedo, and C.T. Moynihan, Phys. Chem. Glassses 13, 171 (1972).

    Google Scholar 

  38. S. Ghosh, and A. Ghosh, Solid State Ion. 149, 67 (2002).

    Article  CAS  Google Scholar 

  39. M.D. Migahed, N.A. Bakr, M.I. Abdel-Hamid, O. El-Hannafy, and M. El-Nimr, J. Appl. Polym. Sci. 59, 655 (1996).

    Article  CAS  Google Scholar 

  40. P. Atkins, and J. de Paua, Physical Chemistry for the Life Sciences (New York: Oxford University Press, 2006), pp. 256–259.

    Google Scholar 

  41. A.K. Jonscher, Universal Relaxation Law (London: Chelsea Dielectrics Press, 1996).

    Google Scholar 

  42. S. R, Philos. Mag. B 36 (1977) 1291.

  43. S.R. Elliott, Philos. Mag. 36, 1291 (1977).

    Article  CAS  Google Scholar 

  44. M. Megdiche, C. Perrin-Pellegrino, and M. Gargouri, J. Alloys Compd. 584, 209 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Iben Nassar.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iben Nassar, K., Rammeh, N., Teixeira, S.S. et al. Physical Properties, Complex Impedance, and Electrical Conductivity of Double Perovskite LaBa0.5Ag0.5FeMnO6. J. Electron. Mater. 51, 370–377 (2022). https://doi.org/10.1007/s11664-021-09301-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09301-z

Keywords

Navigation