Skip to main content
Log in

Overlapping large polaron tunnelling (OLPT) type conduction mechanism in magnesium ferrite (MgFe2O4) ceramics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Conduction mechanism in magnesium ferrite ceramics using dc conductivity, dielectric, impedance and modulus spectroscopy over a wide temperature range (153–393 K) and frequency range (10–1–106 Hz) has been investigated. Temperature-dependent dc conductivity corresponds to Mott’s variable range hopping (VRH) below 313 K and Arrhenius type thermally activated conduction above 313 K. The relaxation frequencies from impedance and modulus spectra also show a similar trend with respect to temperature. AC conductivity follows Jonscher’s power-law (σac = σdc + Afs). The exponent s is found to depend on frequency and temperature exhibiting a minimum around 313 K and corresponds to conduction via overlapping large polaron tunnelling (OLPT).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H. Hirazawa, H. Aono, T. Naohara, T. Maehara, M. Sato, Y. Watanabe, Heat generation ability in AC magnetic field of nano MgFe2O4-based ferrite powder prepared by bead milling. J. Magn. Magn. Mater. 323, 675–680 (2011). https://doi.org/10.1016/j.jmmm.2010.10.010

    Article  ADS  Google Scholar 

  2. A.I. Ivanets, V. Srivastava, MYu. Roshchina, M. Sillanpää, V.G. Prozorovich, V.V. Pankov, Magnesium ferrite nanoparticles as a magnetic sorbent for the removal of Mn2+, Co2+, Ni2+ and Cu2+ from aqueous solution. Ceram. Int. 44, 9097–9104 (2018). https://doi.org/10.1016/j.ceramint.2018.02.117

    Article  Google Scholar 

  3. Y. Pan, Y. Zhang, X. Wei, C. Yuan, J. Yin, D. Cao, G. Wang, Magnesium ferrite (MgFe2O4) nanoparticles as anode materials for lithium-ion batteries. Electrochim. Acta 109, 89–94 (2013). https://doi.org/10.1016/j.electacta.2013.07.026

    Article  Google Scholar 

  4. R. Valenzuela, Novel applications of ferrites. Phys. Res. Int. (2012). https://doi.org/10.1155/2012/591839 (article ID 591839)

  5. L. Thourel, The Use of Ferrites at Microwave Frequencies (Pergamon Press, Oxford, 1964). https://doi.org/10.1016/C2013-0-02292-X

    Book  Google Scholar 

  6. J. Smit, H.P.J. Wijn, Ferrites, Philips Technical Library, Eindhoven pp. 136–175 (1959).

  7. S. Kumar, K. Sreenivas, Effects of DL alanine fuel and annealing on combustion derived MgFe2O4 powder with low carbon content and improved magnetic properties. Appl. Phys. A 127, 165 (2021). https://doi.org/10.1007/s00339-020-04246-2

    Article  ADS  Google Scholar 

  8. E. Greenberg, W.M. Xu, M. Nikolaevsky, E. Bykova, G. Garbarino, K. Lazyrin, D.G. Merkel, L. Dubrovinsky, M.P. Pasternak, GKh. Rozenberg, High-pressure magnetic, electronic, and structural properties of MFe2O4 (M = Mg, Zn, Fe) ferric spinels. Phys. Rev. B 95, 195150 (2017). https://doi.org/10.1103/PhysRevB.95.195150

    Article  ADS  Google Scholar 

  9. M. Gateshki, V. Petkov, S.K. Pradhan, T. Vogt, Structure of nanocrystalline MgFe2O4 from X-ray diffraction, Rietveld and atomic pair distribution function analysis. J. Appl. Crystallogr. 38, 772–779 (2005). https://doi.org/10.1107/S0021889805024477

    Article  Google Scholar 

  10. H. Aono, H. Hirazawa, T. Naohara, T. Maehara, Surface study of fine MgFe2O4 ferrite powder prepared by chemical methods. Appl. Surf. Sci. 254, 2319–2324 (2008). https://doi.org/10.1016/j.apsusc.2007.09.024

    Article  ADS  Google Scholar 

  11. T. Tatarchuk, M. Myslin, I. Mironyuk, M. Bououdina, A.T. Pedziwiatr, R. Argula, B.F. Bogacaz, P. Kurzydlo, Synthesis, morphology, crystallite size and adsorption properties of nanostructured Mg-Zn ferrite with enhanced porous structure. J. Alloys Compd. 819, 152945 (2020). https://doi.org/10.1016/j.jallcom.2019.152945

    Article  Google Scholar 

  12. E.A. Chavarriaga, A.A. Lopera, V. Franco, C.P. Bergmann, and J, Alarcon, Gel combustion synthesis and magnetic properties of CoFe2O4, ZnFe2O4, and MgFe2O4 using 6-aminohexanoic acid as a new fuel. J. Mag. Mag. Mat. 497, 166054 (2020). https://doi.org/10.1016/j.jmmm.2019.166054

    Article  Google Scholar 

  13. D.K. Mahato, S. Banerjee, Dielectric characteristics of MgFe2O4 ferrite prepared by sol-gel auto-combustion method. Mater. Today Proc. 4, 5525–5531 (2017). https://doi.org/10.1016/j.matpr.2017.06.008

    Article  Google Scholar 

  14. S.D. Dalt, A.S. Takimi, T.M. Volkmer, V.C. Sousa, C.P. Bergmann, Magnetic and Mössbauer behavior of the nanostructured MgFe2O4 spinel obtained at low temperature. Powder Technol. 210, 103–108 (2011). https://doi.org/10.1016/j.powtec.2011.03.001

    Article  Google Scholar 

  15. L. Chauhan, A.K. Shukla, K. Sreenivas, Properties of NiFe2O4 ceramics from powders obtained by auto-combustion synthesis with different fuels. Ceram. Int 42, 12136–12147 (2016). https://doi.org/10.1016/j.ceramint.2016.04.146

    Article  Google Scholar 

  16. H. Guan, S. Zhao, H. Wang, D. Yan, M. Wang, Z. Zang, Room temperature synthesis of stable single silica-coated CsPbBr3 quantum dots combining tunable red emission of Ag–In–Zn–S for high-CRI white light-emitting diodes. Nano Energy 67, 104279 (2020). https://doi.org/10.1016/j.nanoen.2019.104279

    Article  Google Scholar 

  17. D. Yan, S. Zhao, Y. Zhang, H. Wang, Z. Zang, Highly efficient emission and high-CRI warm white light-emitting diodes from ligand-modified CsPbBr 3 quantum dots. Opto Electron. Adv. 4, 200075 (2021). https://doi.org/10.29026/oea.2022.200075

    Article  Google Scholar 

  18. Q. Mo, C. Chen, W. Cai, S. Zhao, D. Yan, Z. Zang, Room temperature synthesis of stable zirconia-coated CsPbBr3 nanocrystals for white light-emitting diodes and visible light communication. Laser Photon. Rev. 15, 2100278 (2021). https://doi.org/10.1002/lpor.202100278

    Article  ADS  Google Scholar 

  19. A.C. Druc, A.M. Dumitrescu, A.I. Borhan, V. Nica, A.R. Irodan, M.N. Palamaru, Optimization of synthesis conditions and the study of magnetic and dielectric properties for MgFe2O4 ferrite. Cent. Eur. J. Chem. 11(8), 1330–1342 (2013). https://doi.org/10.2478/s11532-013-0260-1

    Article  Google Scholar 

  20. Y.-L. Liu, Z.-M. Liu, Y. Yang, H.-F. Yang, G.-L. Shen, R.-Q. Yu, Simple synthesis of MgFe2O4 nanoparticles as gas sensing materials. Sens. Actuators B Chem. 107(2), 600–604 (2005). https://doi.org/10.1016/j.snb.2004.11.026

    Article  Google Scholar 

  21. S.M. Hoque, M.A. Hakim, M. Al Mamun, S. Akhter, M.T. Hasan, D.P. Paul, K. Chattopadhayay, Study of the bulk magnetic and electrical properties of MgFe2O4 synthesized by chemical method. Mater. Sci. Appl. 2, 1564–1571 (2011)

    Google Scholar 

  22. D.L. Sekulić, Z.Z. Lazarević, ČD. Jovalekić, A.N. Milutinović, N.Z. Romčević, Impedance spectroscopy of nanocrystalline MgFe2O4 and MnFe2O4 ferrite ceramics: effect of grain boundaries on the electrical properties. Sci. Sinter. 48, 17–28 (2016). https://doi.org/10.2298/sos1601017s

    Article  Google Scholar 

  23. N. Sivakumar, A. Narayanasamy, J.-M. Greneche, R. Murugaraj, Y.S. Lee, Electrical and magnetic behavior of nanostructured MgFe2O4 spinel ferrite. J. Alloys Compd. 504, 395–402 (2010). https://doi.org/10.1016/j.jallcom.2010.05.125

    Article  Google Scholar 

  24. N. Hamdaoui, Y. Azizian-Kalsndaragh, M. Khlifi, L. Beji, Structural, magnetic and dielectric properties of Ni0.6Mg0.4Fe2O4 ferromagnetic ferrite prepared by sol gel method. Ceram. Int. 45, 16458–16465 (2019). https://doi.org/10.1016/j.ceramint.2019.05.177

    Article  Google Scholar 

  25. K. Ugendar, G. Markandeyullu, S. Mallesh, Polaron conduction mechanism in nickel ferrite and its rare-earth derivatives. Physica B 606, 412819 (2021). https://doi.org/10.1016/j.physb.2021.412819

    Article  Google Scholar 

  26. P. Chavan, L.R. Naik, P.B. Belavi, G. Chavan, C.K. Ramesha, R.K. Kotnala, Studies on electrical and magnetic properties of Mg-substituted nickel ferrites. J. Electron. Mater. 46, 188–198 (2017). https://doi.org/10.1007/s11664-016-4886-6

    Article  ADS  Google Scholar 

  27. U.R. Ghodake, R.C. Kambale, S.S. Suryavanshi, Effect of Mn2+ substitution on structural, electrical transport and dielectric properties of Mg–Zn ferrites. Ceram. Int. 43, 1129–1134 (2017). https://doi.org/10.1016/j.ceramint.2016.10.053

    Article  Google Scholar 

  28. S.A. Mazen, A.M. El Taher, The conduction mechanism of Cu–Si ferrite. J. Alloys Compd. 498, 19–25 (2010). https://doi.org/10.1016/j.jallcom.2010.03.121

    Article  Google Scholar 

  29. R.S. Devan, Y.D. Kolekar, B.K. Chougule, Evidence for polaron conduction in nanostructured manganese ferrite. J. Phys. Condens. Matter 18, 9809 (2006). https://doi.org/10.1088/0953-8984/18/43/004C

    Article  ADS  Google Scholar 

  30. A. Radoń, D. Łukowiec, M. Kremzer, J. Mikuła, P. Włodarczyk, Electrical conduction mechanism and dielectric properties of spherical shaped Fe3O4 nanoparticles synthesized by co-precipitation method. Materials 11, 735 (2018). https://doi.org/10.3390/ma11050735

    Article  ADS  Google Scholar 

  31. T.Ş Kuru, E. Şentürk, V. Yüpoğlu, Overlapping large polaron conductivity mechanism and dielectric properties of Al0.2Cd0.8Fe2O4 ferrite nanocomposite. J. Supercond. Nov. Magn. 30, 647–655 (2017). https://doi.org/10.1007/s10948-016-3847-x

    Article  Google Scholar 

  32. R.K. Panda, R. Muduli, S.K. Kar, Dielectric relaxation and conduction mechanism of cobalt ferrite nanoparticles. J. Alloys Compd. 615, 899–905 (2014). https://doi.org/10.1016/j.jallcom.2014.07.031

    Article  Google Scholar 

  33. E.V. Gopalan, K.A. Malini, S. Saravanan, D.S. Kumar, Y. Yoshida, M.R. Anantharaman, J. Phys. D Appl. Phys. 41, 185005 (2008). https://doi.org/10.1088/0022-3727/41/18/185005

    Article  ADS  Google Scholar 

  34. D.K. Mahato, S. Majumder, S. Banerjee, Large polaron tunneling, magnetic and impedance analysis of magnesium ferrite nanocrystallite. Appl. Surf. Sci. 413, 149–159 (2017). https://doi.org/10.1016/j.apsusc.2017.04.021

    Article  ADS  Google Scholar 

  35. C. Choodamani, B. Rudraswamy, G.T. Chandrappa, Structural, electrical, and magnetic properties of Zn substituted magnesium ferrite. Ceram. Int. 42, 10565–10571 (2016). https://doi.org/10.1016/j.ceramint.2016.03.120

    Article  Google Scholar 

  36. L. Chauhan, S. Kumar, K. Sreenivas, A.K. Shukla, Variable range hopping and modulus relaxation in NiFe2O4 ceramics. Mater. Chem. Phys. 259, 124135 (2021). https://doi.org/10.1016/j.matchemphys.2020.124135

    Article  Google Scholar 

  37. D. Bouokkeze, J. Massoudi, W. Hzez, M. Smari, A. Bougoffa, K. Khirouni, E. Dhahri, L. Bessais, Investigation of the structural, optical, elastic and electrical properties of spinel LiZn2Fe3O8 nanoparticles annealed at two distinct temperatures. RSC Adv. 9, 40940–40955 (2019). https://doi.org/10.1039/C9RA07569K

    Article  ADS  Google Scholar 

  38. V.A.M. Brabers, A.A. Scheerder, Electronic magnetic relaxation in manganese ferrite. IEEE Trans. Magn. 24(2), 1907–1909 (1988). https://doi.org/10.1109/20.11642

    Article  ADS  Google Scholar 

  39. N.F. Mott, E.A. Davis, Electronic Processes in Non-crystalline Materials (Clarendon Press, Oxford, 1979)

    Google Scholar 

  40. R.M. Hill, On the observation of variable range hopping. Phys. Status Solidi A 35, K29 (1976). https://doi.org/10.1002/pssa.2210350151

    Article  ADS  Google Scholar 

  41. L. Zhang, Z.J. Tang, Polaron relaxation and variable-range-hopping conductivity in the giant-dielectric-constant material CaCu3Ti4O12. Phys. Rev. B 70, 174306 (2004). https://doi.org/10.1103/PhysRevB.70.174306

    Article  ADS  Google Scholar 

  42. H. Zheng, W. Weng, G. Han, P. Du, Colossal permittivity and variable-range-hopping conduction of polarons in Ni0.5Zn0.5Fe2O4 ceramic. J. Phys. Chem. C 117, 12966–12972 (2013). https://doi.org/10.1021/jp402320b

    Article  Google Scholar 

  43. B.S. Kumar, Y.N. Kumar, V. Kamalarasan, C. Venkateswaran, Non adiabatic small polaron hopping transport above metal-like to insulator transition in the vacant ed-orbital Tb2Ti2O7 pyrocholore oxide. J. Mater. Sci. Mater. Electron. 31, 22312–223122 (2020). https://doi.org/10.1007/s10854-020-04732-6

    Article  Google Scholar 

  44. V. Bovtun, J. Petzelt, M. Kempa, D. Nuzhnyy, M. Savinov, S. Kamba, S.M.M. Yee, D.A. Crandles, Wide range dielectric and infrared spectroscopy of (Nb+In) co-doped rutile ceramics. Phys. Rev. Mater. 2, 075002 (2018). https://doi.org/10.1103/PhysRevMaterials.2.075002

    Article  Google Scholar 

  45. A. Mansingh, AC conductivity of amorphous semiconductors. Bull. Mater. Sci 2, 325–351 (1980). https://doi.org/10.1007/BF02908579

    Article  Google Scholar 

  46. L. Sun, R. Zhang, Z. Wang, L. Ju, E. Cao, Y. Zhang, Structural, dielectric and magnetic properties of NiFe2O4 prepared via sol–gel auto-combustion method. J. Magn. Magn. Mater. 421, 65–70 (2017). https://doi.org/10.1016/j.jmmm.2016.08.003

    Article  ADS  Google Scholar 

  47. L. Liu, S. Ren, J. Liu, F. Han, J. Zhang, B. Peng, D. Wang, A.A. Bokov, Z.-G. Ye, Localized polarons and conductive charge carriers: understanding CaCu3Ti4O12 over a broad temperature range. Phys. Rev. B 99, 094110 (2019). https://doi.org/10.1103/PhysRevB.99.094110

    Article  ADS  Google Scholar 

  48. P. Lunkenheimer, S. Krohns, S. Riegg, S.G. Ebbinghaus, A. Reller, A. Loidl, Colossal dielectric constants in transition-metal oxides. Eur. Phys. J. Spec. Top. 180, 61–89 (2010). https://doi.org/10.1140/epjst/e2010-01212-5

    Article  Google Scholar 

  49. M.R. Shoar Abouzari, F. Berkemeier, G. Schmitz, D. Wilmer, On the physical interpretation of constant phase elements. Solid State Ion. 180, 922–927 (2009). https://doi.org/10.1016/j.ssi.2009.04.002

    Article  Google Scholar 

  50. A. Twarowski, Temperature dependence of the Schottky barrier capacitance in α- and β-zinc phthalocyanine. J. Chem. Phys. 77, 4698–4703 (1982). https://doi.org/10.1063/1.444371

    Article  ADS  Google Scholar 

  51. C.T. Moynihan, N. Balitactac, L. Boone, T.A. Litovitz, J. Chem. Phys. 55, 3013 (1971). https://doi.org/10.1063/1.1676531

    Article  ADS  Google Scholar 

  52. F. Kremer, A. Schonhals (eds) Ch.3 Analysis of dielectric spectra, in Broadband Dielectric Spectroscopy (Springer, Berlin, 2003), pp. 59–98. https://doi.org/10.1007/978-3-642-56120-7_3

  53. R. Bergman, General susceptibility functions for relaxations in disordered systems. J. Appl. Phys. 88, 1356–1365 (2000). https://doi.org/10.1063/1.373824

    Article  ADS  Google Scholar 

  54. A.K. Jonscher, The ‘universal’ dielectric response. Nature 267, 673–679 (1977). https://doi.org/10.1038/267673a0

    Article  ADS  Google Scholar 

  55. A.S. Nowick, B.S. Lim, A.V. Vaysleyb, Nature of the ac conductivity of ionically conducting crystals and glasses. J. Non Cryst. Solids 172–174, 1243–1251 (1994). https://doi.org/10.1016/0022-3093(94)90649-1

    Article  ADS  Google Scholar 

  56. L. Zhao, X. Li, Q. Zhao, Z. Qu, D. Yuan, S. Liu, X. Hu, G. Chen, Synthesis, characterization and adsorptive performance of MgFe2O4 nanospheres for SO2 removal. J. Hazard. Mater. 184, 704–708 (2020). https://doi.org/10.1016/j.jhazmat.2010.08.096

    Article  Google Scholar 

  57. N.K. Gupta, Y. Ghaffari, S. Kim, J. Bae, K.S. Kim, M. Saifuddin, Photocatalytic degradation of organic pollutants over MFe2O4 (M = Co, Ni, Cu, Zn) nanoparticles at neutral pH. Sci. Rep. 10, 4942 (2020). https://doi.org/10.1038/s41598-020-61930-2

    Article  ADS  Google Scholar 

  58. A.T. Kozakov, A.G. Kochur, A.V. Nikolsky, K.A. Googlev, V.G. Smotrakov, V.V. Eremkin, Valence and magnetic state of transition-metal and rare-earth ions in single-crystal multiferroics RMn2O5 (R = Y, Bi, Eu, Gd) from X-ray photoelectron spectroscopy data. J. Electron. Spectrosc. Relat. Phenom. 184, 508–516 (2011). https://doi.org/10.1016/j.elspec.2011.08.006

    Article  Google Scholar 

  59. J.P. Singh, S.O. Won, W.C. Lim, I.-J. Lee, K.H. Chae, Electronic structure studies of chemically synthesized MgFe2O4 nanoparticles. J. Mol. Struct. 1108, 444–450 (2016). https://doi.org/10.1016/j.molstruc.2015.12.002

    Article  ADS  Google Scholar 

  60. S. Ke, P. Lin, H. Fan, H. Hung, X. Zeng, Variable range hopping conductivity in high-k Ba(Fe0.5Nb0.5)O3 ceramics. J. App. Phys. 114, 104106 (2013). https://doi.org/10.1063/1.4821042

    Article  ADS  Google Scholar 

  61. M.A. Kastner, R.J. Birgeneau, C.Y. Chen, Y.M. Chiang, D.R. Gabbe, H.P. Jenssen, T. Junk, C.J. Peters, P.J. Picone, T. Thio, T.R. Thurston, H.L. Tuller, Resistivity of non-metallic La2−ySryCu1–xLixO4−δ single crystals and ceramics. Phys. Rev. B. 37, 111–117 (1988). https://doi.org/10.1103/PhysRevB.37.111

    Article  ADS  Google Scholar 

  62. A.S. Hassanien, A.A. Akl, Estimation of some physical characteristics of chalcogenide bulk Cd50S050−xSex glassy systems. J. Non Cryst. Solids 428, 112–120 (2015). https://doi.org/10.1016/j.jnoncrysol.2015.08.011

    Article  ADS  Google Scholar 

  63. H.H. Naster, W.D. Kingery, in Proceedings of the Seventh International Conference on Glass, Brussels, Gordon and Breach, New York, 106 (1965).

  64. S.H. Yoon, C.A. Randall, K.H. Hur, Effect of acceptor concentration on the bulk electrical conduction in acceptor (Mg)-doped BaTiO3. J. Appl. Phys. 107, 103721 (2010). https://doi.org/10.1063/1.3428457

    Article  ADS  Google Scholar 

  65. I.G. Austin, N.F. Mott, Polarons in crystalline and non-crystalline materials. Adv. Phys. 18, 41–102 (1969). https://doi.org/10.1080/00018736900101267

    Article  ADS  Google Scholar 

  66. A.R. Long, Frequency-dependent loss in amorphous semiconductors. Adv. Phys. 5, 553–667 (1982). https://doi.org/10.1080/00018738200101418

    Article  ADS  Google Scholar 

  67. S.R. Elliott, AC conduction mechanism in amorphous chalcogenide and pnictide semiconductors. Adv. Phys. 36, 135–217 (1987). https://doi.org/10.1080/00018738700101971

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The use of facilities at the University Science Instrumentation Centre (USIC), University of Delhi is gratefully acknowledged. Mr. Sudhanshu Kumar acknowledges the Junior research fellowship (JRF) and senior research fellowship (SRF) awarded by the Council of Scientific and Industrial Research India, India, vide No. 09/045(1595)/2018 -EMR-I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sreenivas.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 81 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Shukla, A.K. & Sreenivas, K. Overlapping large polaron tunnelling (OLPT) type conduction mechanism in magnesium ferrite (MgFe2O4) ceramics. Appl. Phys. A 128, 381 (2022). https://doi.org/10.1007/s00339-022-05481-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05481-5

Keywords

Navigation