Skip to main content

Advertisement

Log in

High temperature ac conductivity relaxations in dielectric ceramics: grain boundary/intergranular phase effects

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The electric polarization and dc conductivity as two main factors cause electric relaxation in dielectric ceramic, which are difficult to be distinguished from each other at high temperatures. In this work, it is found that the two key factors can be separated via conjoint analysis of various complex planes such as complex dielectric permittivity, the impedance, the electric modulus, and the ac conductivity planes. Taking ZnO ceramics as a typical example, the ac conductivity relaxations caused by the long range and short-range migration of charge carriers are discussed as a function of frequency at high temperatures (433–473 K). Under the applied ac electric field, the migration of charge carriers within the ZnO ceramic can be restricted by two high-resistance barriers from grain boundaries and intergranular phases. These barriers result in two dispersion processes in conductivity response, which exhibit two relaxation peaks with activation energies of 0.75 eV and 0.89 eV. It was proposed that, in high temperature region, the ac conductivity relaxations of ZnO ceramic are the result of carrier migration localized between grain boundaries, and carrier migration localized between intergranular phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Lunkenheimer, S. Krohns, S. Riegg, S.G. Ebbinghaus, A. Reller, A. Loidl, Eur. Phys. J.-Spec. Top. 180, 61 (2010)

    Google Scholar 

  2. M.A. Alim, Active and Passive Elec. Comp. 19, 139 (1996)

    Google Scholar 

  3. Y. Huang, K. Wu, Z. Xing, C. Zhang, X. Hu, P. Guo, J. Zhang, J. Li, J. Appl. Phys. 125, 084103 (2019)

    Google Scholar 

  4. P. Cheng, S. Li, L. Zhang, J. Li, Appl. Phys. Lett. 93, 12902 (2008)

    Google Scholar 

  5. W. Li, R.W. Schwartza, Appl. Phys. Lett. 89, 242906 (2006)

    Google Scholar 

  6. X. Zhao, J. Li, H. Li, S. Li, J. Appl. Phys. 111, 124106 (2012)

    Google Scholar 

  7. B. Roling, A. Happe, K. Funke, M.D. Ingram, Phy. Rev. Lett. 78, 2160 (1997)

    CAS  Google Scholar 

  8. D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, Appl. Phys. Lett. 80, 2153 (2002)

    CAS  Google Scholar 

  9. T.T. Fang, C.P. Liu, Chem. Mater. 17, 5167 (2005)

    CAS  Google Scholar 

  10. X.T. Zhao, R.J. Liao, N.C. Liang, L.J. Yang, J. Li, J.Y. Li, J. Appl. Phys. 116, 014103 (2014)

    Google Scholar 

  11. P.B. Macedo, C.T. Moynihan, R. Bose, Phys. Chem. Glasses 13, 171 (1972)

    CAS  Google Scholar 

  12. K. Pathmanathan, J.R. Stevens, J. Appl. Phys. 68, 5128 (1990)

    CAS  Google Scholar 

  13. A. Ben Rhaiem, F. Hlel, K. Guidara, M. Gargouri (2008) J. Alloys Compd. 463: 440

  14. G.M. Tsangaris, G.C. Psarras, N. Kouloumbi, J. Mater. Sci. 33, 2027 (1998)

    CAS  Google Scholar 

  15. F.Q. Tian, Y. Ohki, IEEE Trans. Dielectr. Electr. Insul. 21, 929 (2014)

    CAS  Google Scholar 

  16. C.C. Wang, L.W. Zhang, Appl. Phys. Lett. 90, 142905 (2007)

    Google Scholar 

  17. C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, A.P. Ramirez, Science 293, 673 (2001)

    CAS  Google Scholar 

  18. J.Y. Li, X.T. Zhao, S.T. Li, M.A. Alim, J. Appl. Phys. 108, 104104 (2010)

    Google Scholar 

  19. T.T. Fang, H.K. Shiau, J. Am. Ceram. Soc. 87, 2072 (2004)

    CAS  Google Scholar 

  20. J.R. Macdonald, J. Phys. Chem. Solids 70, 546 (2009)

    CAS  Google Scholar 

  21. J.R. Macdonald, J. Non-cryst, Solids 197, 83 (1996)

    CAS  Google Scholar 

  22. P. Debye, Polar Molecules (Chemical Catalogue Company, New York, 1929)

    Google Scholar 

  23. S. Sanghi, A. Sheoran, A. Agarwal, S. Khasa, Phys. B 405, 4919 (2010)

    CAS  Google Scholar 

  24. J.C. Wurst, J.A. Nelson, J. Am. Ceram. Soc. 55, 109 (1972)

    CAS  Google Scholar 

  25. E. Olsson, G.L. Dunlop, J. Appl. Phys. 66, 3666 (1989)

    CAS  Google Scholar 

  26. M. Tao, A.I. Sui, O. Dorlanne, A. Loubiere, J. Appl. Phys. 61, 1562 (1987)

    CAS  Google Scholar 

  27. F. Greuter, G. Blatter, Semicond. Sci. Technol. 5, 111 (1990)

    CAS  Google Scholar 

  28. D.R. Clarke, J. Am. Ceram. Soc. 82, 485 (1999)

    CAS  Google Scholar 

  29. F. Kremer, A. Schönhals, Broadband Dielectric Spectroscopy (Springer-Verlag, Berlin Heidelberg GmbH, 2003)

    Google Scholar 

  30. A.K. Jonscher, Universal Relaxation Law (Chelsea Dielectrics Press, London, 1996)

    Google Scholar 

  31. M.M. Costa, G.F.M. Pires Jr., A.J. Terezo, M.P.F. Graca, A.S.B. Sombra, J. Appl. Phys. 110, 034107 (2011)

    Google Scholar 

  32. E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy Theory, Experiment, and Applications, 2nd edn. (Wiley, New York, 2005)

    Google Scholar 

  33. Y.W. Hong, J.H. Kim, Ceram. Int. 30, 1307 (2004)

    CAS  Google Scholar 

  34. M. Andres-Verges, A.R. West, J. Electroceram. 1, 125 (1997)

    CAS  Google Scholar 

  35. K. Eda, I.E.E.E. Electr, Insul. M. 5, 28 (1989)

    Google Scholar 

  36. C. Leach, K.D. Vernon-Parry, N.K. Ali, J. Elctroceram. 25, 188 (2010)

    CAS  Google Scholar 

  37. D.C. Sinclair, A.R. West, J. Appl. Phys. 66, 3850 (1989)

    CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by Fund of the National Natural Science Foundation of China (No. 51877016), the Natural Science Foundation of Chongqing (No. cstc2019jcyjxfkxX0008), and the Fok Ying-Tong Education Foundation, China (No. 171050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuetong Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Li, Y., Ren, L. et al. High temperature ac conductivity relaxations in dielectric ceramics: grain boundary/intergranular phase effects. J Mater Sci: Mater Electron 31, 16468–16478 (2020). https://doi.org/10.1007/s10854-020-04201-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04201-0

Navigation