Skip to main content
Log in

On IV measurements and high field conduction of (Se80Te20)94−xGe6Bix (0 ≤ x ≤ 12) chalcogenide alloys

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

(Se80Te20)94−xGe6Bix (0 ≤ x ≤ 12) chalcogenide alloys were prepared by melt quenching technique. Current–voltage (IV) measurements on pellets of the primed samples were taken in temperature range 293–313 K and voltage range 0–200 V for detailed analysis of DC conductivity and to elucidate the conduction mechanism of present chalcogenide system. DC conductivity is found to increase with Bi content. Further, the deduced values of pre-exponential factor and activation energy calculated using the temperature dependence of DC conductivity and show that conduction in the examined alloys is through thermally aided tunnelling of charge carriers among the localised states existing in band tails. The detailed investigation reveals that space charge limited conduction (SCLC) theory is not able to characterize the conduction process, since ln(I/V) versus V plots are essentially linear, despite the fact that the slope of these plots does not decrease linearly with temperature. The linear relationship between ln(I) and V1/2 in all investigated samples indicates either Poole–Frenkel or Schottky emission is involved in conduction process. Further analysis of results shows that Poole–Frenkel conduction mechanism is the best fit for describing the conduction. Mott’s variable range of hopping charge carriers model and temperature dependence of DC conductivity have been utilized to calculate various parameters such as degree of disorder, degree of localization, density of localized states at Fermi level, hopping distance and hopping energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data and materials were available. The experiential data will be available on reasonable request from the authors.

References

  1. A.B. Seddon, J. Non-Cryst. Solids 184, 44 (1995)

    Article  CAS  Google Scholar 

  2. Y. Yang, T. Sun, C. Lin, S. Dai, X. Zhang, W. Ji, F. Chen, Ceram. Int. 45, 18767 (2019)

    Article  CAS  Google Scholar 

  3. P. Vashist, B.S. Patial, S. Bhardwaj, A.M. Awasthi, S.K. Tripathi, N. Thakur, Phase Trans. 95, 308 (2022)

    Article  Google Scholar 

  4. B.S. Patial, N. Thakur, S.K. Tripathi, Phys. Scr. 85, 045603 (2012)

    Article  Google Scholar 

  5. P. Vashist, B.S. Patial, S. Bhardwaj, A.M. Awasthi, S.K. Tripathi, N. Thakur, Indian J. Pure Appl. Phys. 58, 135 (2020)

    Google Scholar 

  6. N. Tohge, H. Matsuo, T. Minami, J. Non-Cryst. Solids 95–96, 809 (1987)

    Article  Google Scholar 

  7. M.A. Shahbazi, L. Faghfouri, M. Nica, P.A. Ferreira, P. Cia Figueiredo, H. Maleki, F. Sefat, J. Hirvonen, H. Lder, A. Santos, Chem. Soc. Rev 49, 1253 (2020)

    Article  CAS  Google Scholar 

  8. H. Bao, C.M. Li, X. Cui, Q. Song, H. Yang, J. Guo, Nanotechnology 19, 335302 (2008)

    Article  Google Scholar 

  9. H. Mamur, M.R.A. Bhuiyan, F. Korkmaz, M. Nil, Renew. Sustain. Energy Rev. 82, 4159 (2018)

    Article  CAS  Google Scholar 

  10. T.O. Ajiboye, O.A. Oyewo, D.C. Onwudiwe, Surf. Interfaces 23, 100927 (2021)

    Article  CAS  Google Scholar 

  11. Y. Dong, C. Su, X. Pan, Y. Zhao, J. Wen, F. Pang, Y. Huang, Y. Shang, T. Wang, Opt. Fiber Technol. 58, 102257 (2020)

    Article  CAS  Google Scholar 

  12. N.F. Mott, E.A. Davis, R.A. Street, Philos. Mag. 32, 961 (1975)

    Article  CAS  Google Scholar 

  13. S. Mansoor Ali, S. Aldawood, M.S. AlGarawi, S.S. AlGhamdi, H. Kassim, A. Aziz, J. Mater. Sci. Mater. Electron. 33(24), 18982–18990 (2022)

    Article  CAS  Google Scholar 

  14. R. Singh, P. Kumari, M. Kumar, T. Ichikawa, A. Jain, Molecules 25, 3733 (2020)

    Article  CAS  Google Scholar 

  15. J. Ni, X. Bi, Y. Jiang, L. Li, J. Lu, Nano Energy 34, 356 (2017)

    Article  CAS  Google Scholar 

  16. W. Zheng, T. Xie, Y. Zhou, Y.L. Chen, W. Jiang, S. Zhao, J. Wu, Y. Jing, Y. Wu, G. Chen, Y. Guo, J. Yin, S. Huang, H.Q. Xu, Z. Liu, H. Peng, Nat. Commun. 6, 6972 (2015)

    Article  CAS  Google Scholar 

  17. C. Julien, I. Sararas, A. Chevy, Solid State Ionics 36, 113 (1989)

    Article  CAS  Google Scholar 

  18. N.F. Mott, Philos. Mag. 22, 7 (1970)

    Article  CAS  Google Scholar 

  19. N.F. Mott, Philos. Mag. 19, 835 (1969)

    Article  CAS  Google Scholar 

  20. A.S. Hassanien, A.A. Akl, J. Non-Cryst. Solids 487, 28 (2018)

    Article  CAS  Google Scholar 

  21. A.S. Hassanien, A.A. Akl, J. Non-Cryst. Solids 432, 471 (2016)

    Article  CAS  Google Scholar 

  22. P. Vashist, B.S. Patial, N. Thakur, Appl. Surf. Sci. Adv. 8, 100220 (2022)

    Article  Google Scholar 

  23. M.A.M. Khan, M. Zulfequar, M. Husain, J. Phys. Chem. Solids 62, 1093 (2001)

    Article  CAS  Google Scholar 

  24. Z.H. Khan, M. Zulfeqaur, A. Kumar, M. Husain, Can. J. Phys. 80, 19 (2002)

    Article  CAS  Google Scholar 

  25. V. Sharma, A. Thakur, N. Goyal, G.S.S. Saini, S.K. Tripathi, Semicond. Sci. Technol. 20, 103 (2005)

    Article  CAS  Google Scholar 

  26. V.K. Saraswat, V. Kishore, N.S. Saxena, T.P. Sharma, Indian J. Pure Appl. Phys. 44, 196 (2006)

    CAS  Google Scholar 

  27. N.F. Mott, Adv. Phys. 16, 49 (1967)

    Article  CAS  Google Scholar 

  28. R.A. Street, Phys. Rev. Lett. 49, 1187 (1982)

    Article  CAS  Google Scholar 

  29. A.S. Hassanien, A.A. Akl, Phys. B Condens. Matter 473, 11 (2015)

    Article  CAS  Google Scholar 

  30. A.V. Pendharkar, C. Mande, Physica 66, 204 (1973)

    Article  CAS  Google Scholar 

  31. V.K. Kondawar, C. Mande, Curr. Sci. 42, 562 (1973)

    CAS  Google Scholar 

  32. R.T. Sanderson, J. Chem. Educ. 29, 539 (1952)

    Article  CAS  Google Scholar 

  33. A.J. Campbell, D.D.C. Bradley, D.G. Lidzey, J. Appl. Phys. 82, 6326 (1998)

    Article  Google Scholar 

  34. S. Kumar, R. Arora, A. Kumar, J. Electron. Mater. 1993, 22 (1993)

    Google Scholar 

  35. R.M. Hill, Philos. Mag. 23, 59 (1971)

    Article  CAS  Google Scholar 

  36. A.S. Barrière, J. Pichon, S. Lotfi, G. Gevers, Thin Solid Films 89, 77 (1982)

    Article  Google Scholar 

  37. T. Mahalingam, M. Radhakrishnan, C. Balasubramanian, Thin Solid Films 78, 245 (1981)

    Article  CAS  Google Scholar 

  38. R.M. Hill, Philos. Mag. 24, 1307 (1971)

    Article  CAS  Google Scholar 

  39. M.J.A. Sarkar, M.A.R. Sarkar, Indian J. Pure Appl. Phys. 38, 190 (2000)

    CAS  Google Scholar 

  40. V.S. Kushwaha, N. Mehta, A. Kumar, Indian J. Pure Appl. Phys. 43, 630 (2005)

    CAS  Google Scholar 

  41. S.K. Pal, A. Srivastava, N. Mehta, J. Alloy. Compd. 806, 660 (2019)

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the manuscript. Samples composition and characterizations of these samples were formulated by BSP. Samples preparation, data collection and analysis were performed by PV. The first draft of the manuscript was written by PV and all authors commented on previous versions of this manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Balbir Singh Patial.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vashist, P., Sharma, R., Patial, B.S. et al. On IV measurements and high field conduction of (Se80Te20)94−xGe6Bix (0 ≤ x ≤ 12) chalcogenide alloys. J Mater Sci: Mater Electron 33, 22821–22834 (2022). https://doi.org/10.1007/s10854-022-09049-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09049-0

Navigation