Skip to main content
Log in

Effects of dl-alanine fuel and annealing on auto-combustion derived MgFe2O4 powder with low carbon content and improved magnetic properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

A Correction to this article was published on 20 August 2021

This article has been updated

Abstract

Structural and magnetic properties of as-prepared and annealed MgFe2O4 nano-powders prepared by auto-combustion method using dl-alanine fuel have been investigated. Nanoparticles with single-crystal electron diffraction patterns are analyzed, and phase purity is confirmed by X-ray diffraction and Raman and infrared spectroscopy. Residual carbon (C), hydrogen (H) and nitrogen (N) content in as-prepared powders is found to reduce by annealing the powders at 900 °C in air. Annealing the as-prepared powders in the range (600–1200 °C) increases the crystallite size from 35 to 46 nm, and increases saturation magnetization to 36 emu/g with low coercivity of ~ 33 Oe. Variations in the magnetic properties are correlated with changes in cation distribution in the octahedral and tetrahedral sites estimated from X-ray diffraction and magnetic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. L. Thourel, The Use of Ferrites at Microwave Frequencies (Pergamon Press, New York, 1964).

    Google Scholar 

  2. M. Sugimoto, The past, present and future of ferrites. J. Am. Ceram. Soc. 82, 269–280 (1999). https://doi.org/10.1111/j.1551-2916.1999.tb20058.x

    Article  Google Scholar 

  3. R. Vlenzuela, Novel applications of ferrites. Phys. Res. Int. (2012). https://doi.org/10.1155/2012/591839

    Article  Google Scholar 

  4. M. Bououdina, B. Al-Najar, L. Falamarzi, J.J. Vijaya, M.N. Shaikh, S. Bellucci, Eur. Phys. J. Plus 134, 84 (2019). https://doi.org/10.1140/epjp/i2019-12485-5

    Article  Google Scholar 

  5. P. Dhiman, N. Dhiman, A. Kumar, G. Sharma, M. Naushad, A.A. Ghfar, J. Mol. Liq. 294, 111574 (2019). https://doi.org/10.1016/j.molliq.2019.111574

    Article  Google Scholar 

  6. N. Huo, Y. Yin, W. Liu, J. Zhang, Y. Ding, Q. Wang, Z. Shi, S. Yang, New. J. Chem. 40, 7068 (2016). https://doi.org/10.1039/C6NJ00084C

    Article  Google Scholar 

  7. M. Gateshki, V. Petkov, S.K. Pradhan, T. Vogt, J. Appl. Cryst. 38, 772–779 (2005). https://doi.org/10.1107/S0021889805024477

    Article  Google Scholar 

  8. E. Greenberg, W.M. Xu, M. Nikolaevsky, E. Bykova, G. Garbarino, K. Glazyrin, D.G. Merkel, L. Dubrovinsky, M.P. Pasternak, GKh. Rozenberg, Phys. Rev. B 95, 195150 (2017). https://doi.org/10.1103/PhysRevB.95.195150

    Article  ADS  Google Scholar 

  9. A. Franco, M.S. Silva, J. Appl. Phys. 109, 07B505 (2011). https://doi.org/10.1063/1.3536790

    Article  Google Scholar 

  10. T. Tatarchuk, M. Myslin, I. Mironyuk, M. Bououdina, A.T. Pedziwiatr, R. Gargula, B.F. Bogacaz, P. Kurzydlo, J. Alloys Compd. 819, 152945 (2020). https://doi.org/10.1016/j.jallcom.2019.152945

    Article  Google Scholar 

  11. S.K. Pradhan, S. Bid, M. Gateshki, V. Petkov, Mater. Chem. Phys. 93, 224–230 (2005). https://doi.org/10.1016/j.matchemphys.2005.03.017

    Article  Google Scholar 

  12. S. Manesiri, M. Sangmanee, A. Wiengmoon, Nanoscale Res. Lett. 4, 221–228 (2019). https://doi.org/10.1007/s11671-008-9229-y

    Article  ADS  Google Scholar 

  13. Z. Yan, J. Gao, Y. Li, M. Zhang, M. Guo, RSC Adv. 5, 92778–92787 (2005). https://doi.org/10.1039/C5RA17145H

    Article  ADS  Google Scholar 

  14. I. Bergmann, V. Šepelák, K.D. Becker, Solid State Ion. 117, 1865–1968 (2006). https://doi.org/10.1016/j.ssi.2006.04.002

    Article  Google Scholar 

  15. V. Šepelák, F. Krumeich, F.J. Litterst, K.D. Becker, J. Appl. Phys. 88, 5884 (2000). https://doi.org/10.1063/1.1316048

    Article  ADS  Google Scholar 

  16. R.A. Candeia, M.A.F. Souza, M.I.B. Bernardi, S.C. Maestrelli, I.M.G. Santos, A.G. Souza, E. Longo, Mater. Res. Bull. 41, 183–190 (2006). https://doi.org/10.1016/j.materresbull.2005.07.019

    Article  Google Scholar 

  17. H. Aono, H. Hirazawa, T. Naohara, T. Maehara, Appl. Surf. Sci. 254, 2319–2324 (2008). https://doi.org/10.1016/j.apsusc.2007.09.024

    Article  ADS  Google Scholar 

  18. P. Heidari, S.M. Masoudpanah, J. Mater. Res. Technol. 9, 4469–4475 (2020). https://doi.org/10.1016/j.jmrt.2020.02.073

    Article  Google Scholar 

  19. C. Murugesan, L. Okrasa, G. Chandrasekharan, J. Supercond. Nov. Magn. 31, 3255–3262 (2018). https://doi.org/10.1007/s10948-018-4573-3

    Article  Google Scholar 

  20. D.K. Mahato, S. Majumder, S. Banerjee, Appl. Surf. Sci. 413, 149–159 (2017). https://doi.org/10.1016/j.apsusc.2017.04.021

    Article  ADS  Google Scholar 

  21. A.C. Druc, A.M. Dumitrescu, A.I. Borhan, V. Nica, A.R. Irodan, M.N. Palamaru, Cent. Eur. J. Chem. 11, 1330–1342 (2013). https://doi.org/10.2478/s11532-013-0260-1

    Article  Google Scholar 

  22. J. Chandradass, A.H. Jadhav, K.H. Kim, H. Kim, J. Alloys Compd. 517, 164–169 (2012). https://doi.org/10.1016/j.jallcom.2011.12.071

    Article  Google Scholar 

  23. A. Pradeep, P. Priyadarshini, G. Chandrasekaran, J. Magn. Magn. Mater. 320, 2774–2779 (2008). https://doi.org/10.1016/j.jmmm.2008.06.012

    Article  ADS  Google Scholar 

  24. Y. Huang, Y. Tang, J. Wang, Q. Chen, Mater. Chem. Phys. 97, 394–397 (2006). https://doi.org/10.1016/j.matchemphys.2005.08.035

    Article  Google Scholar 

  25. V.M. Khot, A.B. Salunkhe, M.R. Phadatare, S.H. Pawar, Mater. Chem. Phys. 132, 782–787 (2012). https://doi.org/10.1016/j.matchemphys.2011.12.012

    Article  Google Scholar 

  26. S. Upadhyay, K. Sreenivas, J. Atomic Mol. Condens. Nano Phys. 2, 101–108 (2015). https://www.rgnpublications.com/journals/index.php/jamcnp/article/view/330/0

  27. E.A. Chavarriaga, A.A. Lopera, V. Franco, C.P. Bergmann, J. Alarcon, J. Magn. Magn. Mater. 497, 166054 (2020). https://doi.org/10.1016/j.jmmm.2019.166054

    Article  Google Scholar 

  28. S. Thankachan, S. Xavier, B. Jacob, E.M. Mohammed, J. Exp. Nanosci. 8, 347. – 357 (2013). https://doi.org/10.1080/17458080.2012.690892

    Article  Google Scholar 

  29. S.D. Dalt, A.S. Takimi, T.M. Volkmer, V.C. Sousa, C.P. Bergmann, Powder Technol. 210, 103–108 (2011). https://doi.org/10.1016/j.powtec.2011.03.001

    Article  Google Scholar 

  30. R. Köferstein, T. Walther, D. Hesse, S.G. Ebbinghaus, J. Mater. Sci. 48, 6509–6518 (2013). https://doi.org/10.1007/s10853-013-7447-x

    Article  ADS  Google Scholar 

  31. T. Prabhakaran, J. Hemalatha, J. Alloys Compd. 509, 7071–7077 (2011). https://doi.org/10.1016/j.jallcom.2011.03.176

    Article  Google Scholar 

  32. L. Chauhan, A.K. Shukla, K. Sreenivas, Ceram. Int. 42, 12136–12147 (2016). https://doi.org/10.1016/j.ceramint.2016.04.146

    Article  Google Scholar 

  33. B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials (Wiley, New York, 1972).

    Google Scholar 

  34. K. Momma, F. Izumi, J. Appl. Crystallogr. 44, 1272–1276 (2011). https://doi.org/10.1107/S0021889811038970

    Article  Google Scholar 

  35. J. Smith, H.P.J. Wijn, Ferrites (Philips Technical Library, Eindhoven, 1959).

    Google Scholar 

  36. M. Klinger, A. Jäger, J. Appl. Cryst. 48, 2012–2108 (2015). https://doi.org/10.1107/S1600576715017252

    Article  Google Scholar 

  37. W.B. White, B.A. DeAngelis, Spectochem. Acta 23A, 985–995 (1967). https://doi.org/10.1016/0584-8539(67)80023-0

    Article  ADS  Google Scholar 

  38. Z. Wang, P. Lazor, S.K. Saxena, H.S.C. O’Neill, Mater. Res. Bull. 37, 1580–1602 (2002). https://doi.org/10.1016/S0025-5408(02)00819-X

    Article  Google Scholar 

  39. C. Murugesan, L. Okrasa, G. Chandrashekaran, J. Mater. Sci. Mater. Electron. 28, 13168–13175 (2017). https://doi.org/10.1007/s10854-017-7152-7

    Article  Google Scholar 

  40. A.M. Moustafa, L.M. Salah, M. Salerno, M.H. Abdellatif, J. Magn. Magn. Mater. 513, 167267 (2020). https://doi.org/10.1016/j.jmmm.2020.167267

    Article  Google Scholar 

  41. P. Heidari, S.M. Masoudpanah, J. Phys. Chem. Solid 148, 109681 (2021). https://doi.org/10.1016/j.jpcs.2020.109681

    Article  Google Scholar 

  42. A.C. Druc, A.I. Borhan, G.G. Nedelcu, L. Leonite, A.R. Iordan, M.N. Palamaru, Mater. Res. Bull. 48, 4647–4654 (2013). https://doi.org/10.1016/j.materresbull.2013.08.002

    Article  Google Scholar 

  43. M. Ounacer, A. Essoumhi, M. Sajiddine, A. Razouk, A. Fnidiki, F. Richomme, J. Juraszek, S.M. Dubiel, M. Sahlaoui, J. Phys. Chem. Solid 148, 109687 (2021). https://doi.org/10.1016/j.jpcs.2020.109687

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the University Science Instrumentation Center (USIC), University of Delhi, Delhi—110007, India for the use of some characterization techniques. One of the authors Sudhanshu Kumar is thankful to Council of Scientific and Industrial research (CSIR), India for the award of Junior Research Fellowship (JRF) and Senior Research Fellowship (SRF) File No: 09/045(1595)/2018-EMR-I. The authors also thank Prof. Miloslav Kliner and A. Jageer, Institute of Physics, Academy of Science of the Czechoslovakian Republic, Fyzikalni Usstav, for allowing us to use their CrysTbox software for analyzing the electron diffraction patterns.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sreenivas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Sreenivas, K. Effects of dl-alanine fuel and annealing on auto-combustion derived MgFe2O4 powder with low carbon content and improved magnetic properties. Appl. Phys. A 127, 165 (2021). https://doi.org/10.1007/s00339-020-04246-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04246-2

Keywords

Navigation