Skip to main content
Log in

Structural, magnetic, dielectric and electrical properties of Ba0.77Ca0.23TiO3–Ni0.6Zn0.25La0.15Fe2O4 multiferroic composites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, multiferroic composites of (1−x) Ba0.77Ca0.23TiO3 + x Ni0.6Zn0.25La0.15Fe2O4 (x = 0.0, 0.1, 0.2, 0.3, 0.5, 0.7, 0.9 and 1.0) have been synthesized using solid-state reaction method and their different properties have been systematically investigated. X-ray diffraction (XRD) studies reveal the formation of cubic structure for perovskite and cubic spinel structure for ferrite phases with crystallite sizes in the range of 17.79–28.21 nm. Scanning electron microscope (SEM) analyses show that the boundaries between Ca-doped BaTiO3 (BCT) and La-doped Ni-Zn ferrite (NZLFO) phases are very clear which indicates small atomic diffusion. The average grain size was found to vary from 2.27 to 0.83 µm with increasing ferrite content. The M-H hysteresis loops obtained from vibrating sample magnetometer (VSM) measurements show as the content of the ferrite phase is increased the saturation magnetization and the remnant magnetization increase but the coercive field and thereby the magneto crystalline anisotropy energy decreases. High dielectric constant values are observed at low frequencies but it decreases with the frequency up to about 7 MHz and beyond which becomes frequency-independent. AC conductivity of the composites derived from dielectric constant and loss tangent values can be described by the hopping mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. L. Herrera Diez, R. Kruk, K. Leistner, J. Sort, Magnetoelectric materials, phenomena, and devices. APL Mater. 9, 050401 (2021). https://doi.org/10.1063/5.0053631

    Article  ADS  Google Scholar 

  2. Y. Slimani, S. Shirsath, E. Hannachi, M. Almessiere, M. Aouna, N. Aldossary et al., (BaTiO3)1‐x + (Co0.5Ni0.5Nb0.06Fe1.94O4)x nanocomposites: Structure, morphology, magnetic and dielectric properties. J. Am. Ceram. Soc. 104, 5648–5658 (2021). https://doi.org/10.1111/jace.17931

    Article  Google Scholar 

  3. Y. Slimani, M. Almessiere, S. Shirsath, E. Hannachi, G. Yasin, A. Baykal et al., Investigation of structural, morphological, optical, magnetic and dielectric properties of (1−x) BaTiO3/xSr0.92Ca0.04Mg0.04Fe12O19 composites. J. Magn. Magn. Mater. 510, 66933 (2020). https://doi.org/10.1016/j.jmmm.2020.166933

    Article  ADS  Google Scholar 

  4. Y. Jia, S. Or, J. Wang, H. Chan, X. Zhao, H. Luo, High magnetoelectric effect in laminated composites of giant magnetostrictive alloy and lead-free piezoelectric ceramic. J. Appl. Phys. 101, 104103 (2007). https://doi.org/10.1063/1.2732420

    Article  ADS  Google Scholar 

  5. K. Verma, S. Singh, S. Tripathi, R. Kotnala, Multiferroic Ni0.6Zn0.4Fe2O4-BaTiO3 nanostructures: Magnetoelectric coupling, dielectric, and fluorescence. J. Appl. Phys. 116, 124103 (2014). https://doi.org/10.1063/1.4896118

    Article  ADS  Google Scholar 

  6. C. Deng, Y. Zhang, J. Ma, Y. Lin, C. Nan, Magnetoelectric effect in multiferroic heteroepitaxial BaTiO3–NiFe2O4 composite thin films. Acta Mater. 56, 405–412 (2008). https://doi.org/10.1016/j.actamat.2007.10.004

    Article  ADS  Google Scholar 

  7. M. Bichurin, V. Petrov, R. Petrov, Direct and inverse magnetoelectric effect in layered composites in electromechanical resonance range: a review. J. Magn. Magn. Mater. 324, 3548–3550 (2012). https://doi.org/10.1016/j.jmmm.2012.02.086

    Article  ADS  Google Scholar 

  8. K. Sadhana, S. Ramana Murthy, S. Jie, Y. Xie, Y. Liu, Q. Zhan et al., Magnetic field induced polarization and magnetoelectric effect of Ba0.8Ca0.2TiO3-Ni0.2Cu0.3Zn0.5Fe2O4 nanomultiferroic. J. Appl. Phys. 113, 17C731 (2013). https://doi.org/10.1063/1.4795820

    Article  Google Scholar 

  9. G. Liu, C. Nan, Z. Xu, H. Chen, Coupling interaction in multiferroic BaTiO3–CoFe2O4 nanostructures. J. Phys. D Appl. Phys. 38, 2321–2326 (2005). https://doi.org/10.1088/0022-3727/38/14/005

    Article  ADS  Google Scholar 

  10. Y. Slimani, A. Selmi, E. Hannachi, M. Almessiere, G. AlFalah, L. AlOusi et al., Study on the addition of SiO2 nanowires to BaTiO3: Structure, morphology, electrical and dielectric properties. J. Phys. Chem. Solids 156, 110183 (2021). https://doi.org/10.1016/j.jpcs.2021.110183

    Article  Google Scholar 

  11. I. Szafraniak-Wiza, L. Kozielski, T. Sebastian, Preparation and properties of Ba1−xCaxTiO3 nanopowders obtained by mechanochemical synthesis. Phase Trans. 89, 803–807 (2016). https://doi.org/10.1080/01411594.2016.1198962

    Article  Google Scholar 

  12. K. Lhoussain, E. Abdelilah, S. Salaheddine, Dielectric study of calcium doped barium titanate Ba1−xCaxTiO3 ceramics. Int. J. Phys. Sci. 11, 71–79 (2016). https://doi.org/10.5897/ijps2015.4415

    Article  Google Scholar 

  13. R. Varatharajan, R. Jayavel, C. Subramanian, Growth and characterization of ferroelectric Ba1−xCaxTiO3 single crystals. Ferroelectrics 215, 169–180 (1998). https://doi.org/10.1080/00150199808229560

    Article  Google Scholar 

  14. M. Mhareb, Y. Slimani, Y. Alajerami, M. Sayyed, E. Lacomme, M. Almessiere, Structural and radiation shielding properties of BaTiO3 ceramic with different concentrations of Bismuth and Ytterbium. Ceram. Int. 46, 28877–28886 (2020). https://doi.org/10.1016/j.ceramint.2020.08.055

    Article  Google Scholar 

  15. Y. Slimani, B. Unal, E. Hannachi, A. Selmi, M. Almessiere, M. Nawaz et al., Frequency and dc bias voltage dependent dielectric properties and electrical conductivity of BaTiO3SrTiO3/(SiO2)x nanocomposites. Ceram. Int. 45, 11989–12000 (2019). https://doi.org/10.1016/j.ceramint.2019.03.092

    Article  Google Scholar 

  16. Y. Slimani, A. Selmi, E. Hannachi, M. Almessiere, A. Baykal, I. Ercan, Impact of ZnO addition on structural, morphological, optical, dielectric and electrical performances of BaTiO3 ceramics. J. Mater. Sci. Mater. Electron. 30, 9520–9530 (2019). https://doi.org/10.1007/s10854-019-01284-2

    Article  Google Scholar 

  17. Y. Slimani, A. Selmi, E. Hannachi, M. Almessiere, M. Mumtaz, A. Baykal et al., Study of tungsten oxide effect on the performance of BaTiO3 ceramics. J. Mater. Sci. Mater. Electron. 30, 13509–13518 (2019). https://doi.org/10.1007/s10854-019-01718-x

    Article  Google Scholar 

  18. Y. Slimani, B. Unal, M. Almessiere, E. Hannachi, G. Yasin, A. Baykal et al., Role of WO3 nanoparticles in electrical and dielectric properties of BaTiO3–SrTiO3 ceramics. J. Mater. Sci. Mater. Electron. 31, 7786–7797 (2020). https://doi.org/10.1007/s10854-020-03317-7

    Article  Google Scholar 

  19. M. Savinov, V. Trepakov, S. Kamba, S. Kapphan, J. Petzelt, R. Pankrath et al., Dielectric and infrared response of Ba0.77Ca0.23TiO3. Ferroelectrics 295, 31–38 (2003). https://doi.org/10.1080/714040620

    Article  Google Scholar 

  20. A. Korkmaz, S. Güner, Y. Slimani, H. Gungunes, M. Amir, A. Manikandan et al., Microstructural, optical, and magnetic properties of vanadium-substituted nickel spinel nanoferrites. J. Supercond. Novel Magn. 32, 1057–1065 (2018). https://doi.org/10.1007/s10948-018-4793-6

    Article  Google Scholar 

  21. Y. Wang, X. Wu, W. Zhang, W. Chen, Synthesis and electromagnetic properties of La-doped Ni–Zn ferrites. J. Magn. Magn. Mater. 398, 90–95 (2016). https://doi.org/10.1016/j.jmmm.2015.09.044

    Article  ADS  Google Scholar 

  22. X. Wu, W. Wu, L. Qin, K. Wang, S. Ou, K. Zhou et al., Structure and magnetic properties evolution of nickel-zinc ferrite with lanthanum substitution. J. Magn. Magn. Mater. 379, 232–238 (2015). https://doi.org/10.1016/j.jmmm.2014.12.057

    Article  ADS  Google Scholar 

  23. O. Hemeda, A. Tawfik, A-Al-Sharif, M. Amer, B. Kamal, D. El Refaay, et al., DC conductivity and magnetic properties of piezoelectric–piezomagnetic composite system. J. Magn. Magn. Mater. 324, 4118–4126 (2012). https://doi.org/10.1016/j.jmmm.2012.07.028

    Article  ADS  Google Scholar 

  24. X. Feng, Z. Xiangchun, L. Liangchao, L. Hui, J. Jing, Synthesis, magnetic properties and microstructure of Ni–Zn–Cr ferrites doped with lanthanum. J. Rare Earths 25, 232–235 (2007). https://doi.org/10.1016/s1002-0721(07)60477-3

    Article  Google Scholar 

  25. Y. Dasan, B. Guan, M. Zahari, L. Chuan, Substitution on structure, morphology and magnetic properties of nanocrystalline Ni–Zn ferrite. PLoS ONE 12, e0170075 (2017). https://doi.org/10.1371/journal.pone.0170075

    Article  Google Scholar 

  26. A. Abdeen, Electric conduction in Ni–Zn ferrites. J. Magn. Magn. Mater. 185, 199–206 (1998). https://doi.org/10.1016/s0304-8853(97)01144-x

    Article  ADS  Google Scholar 

  27. M. Hossain, Effect of rare earth metal substitution on the structural, magnetic and transport properties of Ni–Zn ferrites, MPhil Thesis, Khulna University of Engineering and Technology, Khulna, Bangladesh (2017), http://hdl.handle.net/20.500.12228/130.

  28. K. Patankar, S. Joshi, B. Chougule, Dielectric behaviour in magnetoelectric composites. Phys. Lett. A 346, 337–341 (2005). https://doi.org/10.1016/j.physleta.2005.06.099

    Article  ADS  Google Scholar 

  29. Y. Shen, J. Sun, L. Li, Y. Yao, C. Zhou, R. Su et al., The enhanced magnetodielectric interaction of (1–x) BaTiO3–xCoFe2O4 multiferroic composites. J. Mater. Chem. C. 2, 2545–2551 (2014). https://doi.org/10.1039/C4TC00008K

    Article  Google Scholar 

  30. R. Zhang, C. Deng, L. Ren, Z. Li, J. Zhou, Dielectric, ferromagnetic and magnetoelectric properties of BaTiO3–Ni0.7Zn0.3Fe2O4 composite ceramics. Mater. Res Bulln. 48, 4100–4104 (2013). https://doi.org/10.1016/j.materresbull.2013.06.026

    Article  Google Scholar 

  31. H. Yang, H. Wang, L. He, L. Shui, X. Yao, Polarization relaxation mechanism of Ba0.6Sr0.4TiO3/Ni0.8Zn0.2Fe2O4 composite with giant dielectric constant and high permeability. J. Appl. Phys. 108, 074105 (2010). https://doi.org/10.1063/1.3490782

    Article  ADS  Google Scholar 

  32. J. Boomgaard, A. van Run, J. Van Suchtelen, Piezoelectric-piezomagnetic composites with magnetoelectric effect. Ferroelectrics 14, 727–728 (1976). https://doi.org/10.1080/00150197608236711

    Article  Google Scholar 

  33. S. Lokare, D. Patil, B. Chougule, Structural, dielectric and magnetoelectric effect in (x) BaTiO3 + (1−x) Ni0.93Co0.02Mn0.05Fe2O4 ME composites. J. Alloys Compd. 453, 58–63 (2008). https://doi.org/10.1016/j.jallcom.2006.11.161

    Article  Google Scholar 

  34. M. Kanakadurga, P. Raju, S. Murthy, Preparation and characterization of BaTiO3+MgCuZnFe2O4 nanocomposites. J. Magn. Magn. Mater. 341, 112–117 (2013). https://doi.org/10.1016/j.jmmm.2013.04.037

    Article  ADS  Google Scholar 

  35. A. Kumar, C. Lekha, S. Vivek, V. Saravanan, K. Nandakumar, S. Nair, Multiferroic and magnetoelectric properties of Ba0.85Ca0.15Zr0.1Ti0.9O3–CoFe2O4 core–shell nanocomposite. J. Magn. Magn. Mater. 418, 294–299 (2016). https://doi.org/10.1016/j.jmmm.2016.02.065

    Article  ADS  Google Scholar 

  36. R. Xu, S. Zhang, F. Wang, Q. Zhang, Z. Li, Z. Wang et al., The study of microstructure, dielectric and multiferroic properties of (1 − x) Co0.8Cu0.2Fe2O4-x Ba0.6Sr0.4TiO3 composites. J. Electron. Mater. 48, 386–400 (2018). https://doi.org/10.1007/s11664-018-6718-3

    Article  ADS  Google Scholar 

  37. Y. Liu, Y. Wu, D. Li, Y. Zhang, J. Zhang, J. Yang, A study of structural, ferroelectric, ferromagnetic, dielectric properties of NiFe2O4–BaTiO3 multiferroic composites. J. Mater. Sci. Mater. Electron. 24, 1900–1904 (2012). https://doi.org/10.1007/s10854-012-1032-y

    Article  Google Scholar 

  38. Y. Jun, W. Moon, C. Chang, H. Kim, H. Ryu, J. Kim et al., Effects of Nb-doping on electric and magnetic properties in multi-ferroic BiFeO3 ceramics. Solid State Commun. 135, 133–137 (2005). https://doi.org/10.1016/j.ssc.2005.03.038

    Article  ADS  Google Scholar 

  39. P. Victor, R. Ranjith, S. Krupanidhi, Normal ferroelectric to relaxor behavior in laser ablated Ca-doped barium titanate thin films. J. Appl. Phys. 94, 7702 (2003). https://doi.org/10.1063/1.1618914

    Article  ADS  Google Scholar 

  40. M. Mahmoudi, H. Hosseinkhani, M. Hosseinkhani, S. Boutry, A. Simchi, W. Shane, K. Journeay, S.L. Subramani, Magnetic resonance imaging tracking of stem cells in vivo using iron oxide nanoparticles as a tool for the advancement of clinical regenerative medicine. Chem. Rev. 111, 253–280 (2011). https://doi.org/10.1021/cr1001832

    Article  Google Scholar 

  41. M. Almessiere, Y. Slimani, H. Sayed, A. Baykal, I. Ercan, Microstructural and magnetic investigation of vanadium-substituted Sr-nanohexaferrite. J. Magn. Magn. Mater. 471, 124–132 (2019). https://doi.org/10.1016/j.jmmm.2018.09.054

    Article  ADS  Google Scholar 

  42. D. Ghosh, H. Han, J. Nino, G. Subhash, J. Jones, Synthesis of BaTiO3-20wt%CoFe2O4 Nanocomposites via Spark Plasma Sintering. J. Am. Ceram. Soc. 95, 2504–2509 (2012). https://doi.org/10.1111/j.1551-2916.2012.05221.x

    Article  Google Scholar 

  43. A. Fawzi, A. Sheikh, V. Mathe, Multiferroic properties of Ni ferrite—PLZT composites. Physica B 405, 340–344 (2010). https://doi.org/10.1016/j.phyYsb.2009.08.090

    Article  ADS  Google Scholar 

  44. M. Hakim, S. Nath, S. Sikder, K. Hanium Maria, Cation distribution and electromagnetic properties of spinel type Ni–Cd ferrites. J. Phys. Chem. Solids. 7, 1316–1321 (2013). https://doi.org/10.1016/j.jpcs.2013.04.011

    Article  ADS  Google Scholar 

  45. M. Khedhri, N. Abdelmoula, H. Khemakhem, R. Douali, F. Dubois, Structural, spectroscopic and dielectric properties of Ca-doped BaTiO3. Appl. Phys. A. (2019). https://doi.org/10.1007/s00339-019-2487-y

    Article  Google Scholar 

  46. S.K. Sen, T.C. Paul, S. Dutta, M.N. Hossain, M.N.H. Mia, XRD peak profile and optical properties analysis of Ag-doped h-MoO3 nanorods synthesized via hydrothermal method. J. Mater. Sci. Mater. Electron. 31, 1768–1786 (2020). https://doi.org/10.1007/s10854-019-02694-y

    Article  Google Scholar 

  47. P.V. Ramana, K.S. Rao, K.H. Rao, Influence of iron content on the structural and magnetic properties of Ni-Zn ferrite nanoparticles synthesized by PEG assisted sol-gel method. J. Magn. Magn Mater. (2018). https://doi.org/10.1016/j.jmmm.2018.06.065

    Article  Google Scholar 

  48. K. Brinkman, T. Iijima, K. Nishida, T. Katoda, H. Funakubo, The influence of acceptor doping on the structure and electrical properties of sol–gel derived BiFeO3 thin films. Ferroelectrics 357, 35–40 (2007). https://doi.org/10.1080/00150190701527597

    Article  Google Scholar 

  49. A. Abdel Aal, T. Hammad, M. Zawrah, I. Battisha, A. Abou Hammad, FTIR study of nanostructure perovskite BaTiO3 doped with both Fe3+and Ni2+ions prepared by sol–gel technique. Acta Phys. Pol., A 126, 1318–1321 (2014). https://doi.org/10.12693/APhysPolA.126.1318

    Article  ADS  Google Scholar 

  50. L. Wang, H. Kang, D. Xue, C. Liu, Synthesis and characterization of Ba0.5Sr0.5TiO3 nanoparticles. J. Cryst. Growth. 311, 605–607 (2009). https://doi.org/10.1016/j.jcrysgro.2008.09.069

    Article  ADS  Google Scholar 

  51. X. Wang, L. Zhang, H. Liu, J. Zhai, X. Yao, Dielectric nonlinear properties of BaTiO3–CaTiO3–SrTiO3 ceramics near the solubility limit. Mater. Chem. Phys. 112, 675–678 (2008). https://doi.org/10.1016/j.matchemphys.2008.06.020

    Article  Google Scholar 

  52. A. Gadkari, T. Shinde, P. Vasambekar, Synthesis, characterization and magnetic properties of La3+ added Mg–Cd ferrites prepared by oxalate co-precipitation method. J. Alloy. Compd. 509, 966–972 (2011). https://doi.org/10.1016/j.jallcom.2010.08.155

    Article  Google Scholar 

  53. H. Kumar, J. Singh, R. Srivastava, P. Negi, H. Agrawal, K. Asokan, FTIR and electrical study of dysprosium doped cobalt ferrite nanoparticles. J. Nanosci. 2014, 1–10 (2014). https://doi.org/10.1155/2014/862415

    Article  Google Scholar 

  54. B. Das, A. Hossain, Rietveld refined structure, ferroelectric, magnetic and magnetoelectric response of Gd- substituted Ni–Cu–Zn ferrite and Ca, Zr co-doped BaTiO3 multiferroic composites. J. Alloy. Compd. 867, 159068 (2021). https://doi.org/10.1016/j.jallcom.2021.159068

    Article  Google Scholar 

  55. I. Esha, F. Toma, M. Al-Amin, M. Khan, K. Maria, Synthesis of type-II based (1−x) Ba0.6(Ca1/2Sr1/2)0.4Ti0.5Fe0.5O3 + (x) Ni0.40Zn0.45Cu0.15Fe1.9Eu0.1O4 composites via standard solid state reaction method and investigation of multiferroic properties. AIP Adv. 8, 125207 (2018). https://doi.org/10.1063/1.5078505

    Article  ADS  Google Scholar 

  56. S. Mane, P. Tirmali, B. Ranjit, M. Khan, N. Khan, A. Tarale et al., Studies on magnetocapacitance, dielectric, ferroelectric, and magnetic properties of microwave sintered (1−x) (Ba0.8Sr0.2TiO3) - x (Co0.9Ni0.1Fe2O4) multiferroic composite. Solid State Sci. 81, 43–50 (2018). https://doi.org/10.1016/j.solidstatesciences.2018.05.004

    Article  ADS  Google Scholar 

  57. A. Globus, I. - Magnetization mechanismssome physical considerations about the domain wall size theory of magnetization mechanisms. Le Journal De Physique Colloques. 38, C1-1-C1-15 (1977). https://doi.org/10.1051/jphyscol:1977101

    Article  Google Scholar 

  58. N. Gupta, M. Dimri, S. Kashyap, D. Dube, Processing and properties of cobalt-substituted lithium ferrite in the GHz frequency range. Ceram. Int. 31, 171–176 (2005). https://doi.org/10.1016/j.ceramint.2004.04.004

    Article  Google Scholar 

  59. J. Maxwell, A treatise on electricity and magnetism vol II, 3rd edn. (Oxford University Press, Oxford, 1955)

    Google Scholar 

  60. K. Wagner, Zur Theorie der unvollkommenen Dielektrika. Ann. Phys. 345, 817–855 (1913). https://doi.org/10.1002/andp.19133450502

    Article  MATH  Google Scholar 

  61. C. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83, 121–124 (1951). https://doi.org/10.1103/physrev.83.121

    Article  ADS  Google Scholar 

  62. V. Senthil, T. Badapanda, S. Kumar, P. Kumar, S. Panigrahi, Relaxation and conduction mechanism of PVA: BYZT polymer composites by impedance spectroscopy. J. Polym. Res. 19, 1 (2012). https://doi.org/10.1007/s10965-012-9838-0

    Article  Google Scholar 

  63. K. Verma, A. Kumar, D. Varshney, Dielectric relaxation behavior of AxCo1−xFe2O4 (A=Zn, Mg) mixed ferrites. J. Alloy. Compd. 526, 91–97 (2012). https://doi.org/10.1016/j.jallcom.2012.02.089

    Article  Google Scholar 

  64. M. Hashim, Alimuddin, S. Shirsath, S. Kumar, R. Kumar, A. Roy et al., Preparation and characterization chemistry of nano-crystalline Ni–Cu–Zn ferrite. J. Alloys Comp. 549, 348–357 (2013). https://doi.org/10.1016/j.jallcom.2012.08.039

    Article  Google Scholar 

  65. A. Momin, R. Parvin, M. Shahjahan, M. Islam, H. Tanaka, A. Hossain, Interplay between the ferrimagnetic and ferroelectric phases on the large magnetoelectric coupling of xLi0.1Ni0.2Mn0.6Fe2.1O4–(1−x)Bi0.8Dy0.2FeO3 composites. J. Mater. Sci. Mater. Electron. 31, 511–525 (2019). https://doi.org/10.1007/s10854-019-02556-7

    Article  Google Scholar 

  66. M. Rahaman, S. Saha, T. Ahmed, D. Saha, A. Hossain, Magnetoelectric effect of (1−x) Ba0.5Sr0.5Zr0.5Ti0.5O3+(x) Ni0.12Mg0.18Cu0.2Zn0.5Fe2O4 composites. J. Magn. Magn. Mater. 371, 112–120 (2014). https://doi.org/10.1016/j.jmmm.2014.07.025

    Article  ADS  Google Scholar 

  67. A. Jonscher, The ‘universal’ dielectric response. Nature 267, 673–679 (1977). https://doi.org/10.1038/267673a0

    Article  ADS  Google Scholar 

  68. M. Matin, M. Hossain, M. Ali, M. Hakim, M. Islam, Enhanced dielectric properties of prospective Bi0.85Gd0.15Fe1−xCrxO3 multiferroics. Results Phys. 12, 1653–1659 (2019). https://doi.org/10.1016/j.rinp.2019.01.079

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Materials Science Division, Atomic Energy Centre, Dhaka 1000, Bangladesh and Bangladesh University of Engineering and Technology (BUET), Dhaka 1000, Bangladesh for providing the experimental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Khaled Rouf.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasan, Z., Rouf, H.K. & Khan, M.N.I. Structural, magnetic, dielectric and electrical properties of Ba0.77Ca0.23TiO3–Ni0.6Zn0.25La0.15Fe2O4 multiferroic composites. Appl. Phys. A 128, 311 (2022). https://doi.org/10.1007/s00339-022-05441-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05441-z

Keywords

Navigation