Skip to main content
Log in

Uniaxial tension of crystalline CoSb3 with holes of different sizes: a molecular dynamics study

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Breakthroughs in micro/nanostructural optimization have led to significant improvements in the thermoelectric performance of CoSb3-based skutterudites these years. With regard to the severe service condition and the practically defective structure of skutterudites, a comprehensive understanding of the mechanical reliability is needed. The present work carries out molecular dynamics simulations to study the mechanical response and structural failure of single-crystalline bulk CoSb3 with nanoscale defect holes subjected to uniaxial tension along [100] crystallographic direction at room temperature. To focus on the variation of mechanical failure with the hole size, each simulation model contains only one cylindrical cavity of circular cross section. For different models, the hole diameter changes, but the hole ratio remains constant and small. The variation of tensile stress with strain is obtained from models of different hole diameters. It is possible to make a mathematical fitting from the decrease in ultimate strength with the diameter increase. Critical hole diameter can be predicted from the fitting function, beyond which the hole diameter does not play a role in the structure’s load capacity. The cause of strength degradation, stress concentration at the hole edge, is analyzed as well. The crack happens at different locations on the hole edge for each hole diameter model based on local atomic configuration and interactions. The uniaxial tension is also performed along [110] and [210] directions, respectively, and the results show remarkable orientation discrepancy. Our simulation results are compared with those of the classical theory of elasticity, which helps understand the variation of mechanical responses when the scale comes down to nanometer for CoSb3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. X. Shi, L.D. Chen, Thermoelectric materials step up. Nat. Mater. 15(7), 691–692 (2016)

    Article  ADS  Google Scholar 

  2. J. He, T. M. Tritt. Advances in thermoelectric materials research: looking back and moving forward. Science 357, eaak9997, 2017

  3. T. Zhu, Y. Liu, C. Fu, P.J. Heremans, J.G. Snyder, X. Zhao, Compromise and synergy in high-efficiency thermoelectric materials. Adv. Mater 29, 1605884 (2017)

    Article  Google Scholar 

  4. S. Twaha, J. Zhu, Y. Yan, B. Li, A comprehensive review of thermoelectric technology: materials, applications, modelling and performance improvement. Renew. Sustain. Energy Rev. 65, 698–726 (2016)

    Article  Google Scholar 

  5. R. Ahiska, H. Mamur, A review: thermoelectric generators in renewable energy. Int. J. Renew. Energy Res. 4(1), 128–136 (2014)

    Google Scholar 

  6. F. Attivissimo, N. Di, L. Attilio, M.L. Anna et al., Feasibility of a photovoltaic-thermoelectric generator: performance analysis and simulation results. IEEE Transactions Instrument. Measure. 64(5), 1158–1169 (2015)

    Article  Google Scholar 

  7. S. LeBlanc, Thermoelectric generators: linking material properties and systems engineering for waste heat recovery applications. Sustain. Mater. Technol. 1–2, 26–35 (2014)

    Google Scholar 

  8. S.F. Fan, Y.W. Gao, Numerical analysis on the segmented annular thermoelectric generator for waste heat recovery. Energy 183, 35–47 (2019)

    Article  Google Scholar 

  9. A.F. Agudelo, R. Garcia-Contreras, J.R. Agudelo et al., Potential for exhaust gas energy recovery in a diesel passenger car under European driving cycle. Appl. Energy 174, 201–212 (2016)

    Article  Google Scholar 

  10. F. Suarez, D.P. Parekh, C. Ladd, D. Vashaee, M.D. Dickey, M.C. Öztürk, Flexible thermoelectric generator using bulk legs and liquid metal interconnects for wearable electronics. Appl. Energy 202, 736–745 (2017)

    Article  Google Scholar 

  11. S.J. Kim, H.E. Lee, H. Choi, Y. Kim, J.H. We, J.S. Shin, K.J. Lee, B.J. Cho, High-performance flexible thermoelectric power generator using laser multiscanning lift-off process. ACS Nano 10, 10851–10857 (2016)

    Article  Google Scholar 

  12. G.S. Nolas, D.T. Morelli, T.M. Tritt, Skutterudites: a phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications. Annu. Rev. Mater. Sci. 29, 89–116 (1999)

    Article  ADS  Google Scholar 

  13. G. Rogl, A. Grytsiv, P. Rogl et al., Nanostructuring of p- and n-type skutterudites reaching figures of merit of approximately 13 and 16, respectively. Acta Mater. 76, 434–448 (2014)

    Article  ADS  Google Scholar 

  14. P.G. Jesus, V. Paz, N. Chris et al., Enhancing the thermoelectric properties of single and double filled p-type skutterudites synthesized by an up-scaled ball-milling process. J. Alloy. Compd. 695, 3598–3604 (2017)

    Article  Google Scholar 

  15. D.D. Qin, H.J. Wu, S.T. Cai et al., Enhanced thermoelectric and mechanical properties in Yb03Co4Sb12 with in situ formed CoSi nanoprecipitates. Adv. Energy Mater. 9(42), 1902435 (2019)

    Article  Google Scholar 

  16. H. Yang, P. Wen, X. Zhou, Y. Li, B. Duan, P. Zhai, Q. Zhang, Enhanced thermoelectric performance of Te-doped skutterudite with nano-micro-porous architecture. Scripta Mater. 159, 68–71 (2019)

    Article  Google Scholar 

  17. T. Zhu, Y. Liu, C. Fu, J.P. Heremans, J.G. Snyder, X. Zhao, Compromise and synergy in high-efficiency thermoelectric materials. Adv. Mater. 29(30), 1605884 (2017)

    Article  Google Scholar 

  18. M.T. Barako, W. Park, A.M. Marconnet, M. Asheghi, K.E. Goodson, Thermal cycling, mechanical degradation, and the effective figure of merit of a thermoelectric module. J. Electron. Mater. 42, 372–381 (2013)

    Article  ADS  Google Scholar 

  19. X.Q. Yang, P.C. Zhai, L.S. Liu, Q.J. Zhang, Thermodynamic and mechanical properties of crystalline CoSb3: a molecular dynamics simulation study. J. Appl. Phys. 109, 123517 (2011)

    Article  ADS  Google Scholar 

  20. G.D. Li, Q. An, W. Li, W.A. Goddard, R. Hanus, P.C. Zhai, Q.J. Zhang, G.J. Snyder, Atomistic explanation of brittle failure of thermoelectric skutterudite CoSb3. Acta Mater. 103, 775–780 (2016)

    Article  ADS  Google Scholar 

  21. Y. Tan, X.Q. Yang, Molecular dynamics simulations on the tensile failure of crystalline CoSb3 along different orientations. J. Mater. Eng. Perform. 29(7), 4659–4668 (2020)

    Article  Google Scholar 

  22. X.Q. Yang, P.C. Zhai, C. Cai, L.S. Liu, Q.J. Zhang, Molecular dynamics study of the effects of nanopores on the tensile mechanical properties of crystalline CoSb3. J. Electron. Mater. 43(6), 1837–1841 (2014)

    Article  ADS  Google Scholar 

  23. X.L. Zhang, G.D. Li, B. Duan, G. Chen, X.Q. Yang, P.C. Zhai, Vacancy effect of antimony on shear deformation mechanisms of CoSb3 thermoelectric material. Comput. Mater. Sci. 182, 109761 (2020)

    Article  Google Scholar 

  24. G. Rogl, P. Rogl, Mechanical properties of skutterudites. Sci. Adv. Mater. 3, 517–538 (2011)

    Article  Google Scholar 

  25. J. Eilertsen, M.A. Subramanian, J.J. Kruzic, Fracture toughness of Co4Sb12 and In0.1Co4Sb12 thermoelectric skutterudites evaluated by three methods. J. Alloys Compd. 552, 492–498 (2013)

    Article  Google Scholar 

  26. S.K. Jalali, M.J. Beigrezaee, N.M. Pugno, Atomistic evaluation of the stress concentration factor of graphene sheets having circular holes. Physica E 93, 318–323 (2017)

    Article  ADS  Google Scholar 

  27. S. Rouhi, H. Moradi, Y. Hakimi, F. Nikpour, On the mechanical properties of the graphyne and graphdiyne with patterned hydrogenation and hole: a molecular dynamics investigation. Appl. Phys. A 126, 465 (2020)

    Article  ADS  Google Scholar 

  28. P.R. Budarapu, B. Javvaji, V.K. Sutrakar, D. Roy Mahapatra, G. Zi, T. Rabczuk, Crack propagation in Graphene. J. Appl. Phys. 118, 0643 (2015)

    Article  Google Scholar 

  29. P.R. Budarapu, B. Javvaji, V.K. Sutrakar, D. Roy Mahapatra, M. Paggi, G. Zi, T. Rabczuk, Lattice orientation and crack size effect on the mechanical properties of Graphene. Int J Fract. 203, 81–98 (2017)

    Article  Google Scholar 

  30. A. Mayelifartash, M.A. Abdol, S. Sadeghzadeh, Mechanical properties of intrinsic and defective hybrid polyaniline (C3N)-BC3 nanosheets in the armchair and zigzag configurations: a molecular dynamics study. Appl. Phys. A. 126, 905 (2020)

    Article  ADS  Google Scholar 

  31. H. Talebi, M. Silani, S.P.A. Bordas, P. Kefriden, T. Rabczuk, A computational library for multiscale modeling of material failure. Comput Mech 53, 1047–1071 (2014)

    Article  MathSciNet  Google Scholar 

  32. H. Talebi, M. Silani, T. Rabczuk, Concurrent multiscale modeling of three dimensional crack and dislocation propagation. Adv. Eng. Softw. 80, 82–92 (2015)

    Article  Google Scholar 

  33. T. Schmidt, G. Kliche, H.D. Lutz, Structure refinement of skutterudite-type cobalt triantimonide CoSb3. Acta Cryst. C 43, 1678–1679 (1987)

    Article  Google Scholar 

  34. I. Lefebvre-Devos, M. Lassalle, X. Wallart, Bonding in skutterudites: combined experimental and theoretical characterization of CoSb3. Phys. Rev. B 63, 125110 (2001)

    Article  ADS  Google Scholar 

  35. Large Scale Atomic/Molecular Massively Parallel Simulator, LAMMPS (1 Dec 2013 version). http://lammps.sandia.gov

  36. C.E. Byung, Molecular representation of molar domain (volume), evolution equations, and linear constitutive relations for volume transport. J. Chem. Phys. 129, 094502 (2008)

    Article  Google Scholar 

  37. G. Li, Q. An, W. Li, W.A. Goddard, P. Zhai, Q. Zhang, G.J. Snyder, Brittle failure mechanism in thermoelectric skutterudite CoSb3. Chem. Mater. 27, 6329–6336 (2015)

    Article  Google Scholar 

  38. A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool. Model. Simul. Mater. Sci. Eng. 18, 015012 (2010)

    Article  ADS  Google Scholar 

  39. S.P. Timoshenko, J.N. Goodier, Theory of elasticity (McGraw-Hill Education, New York, 1970)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51972253). We acknowledge Sandia National Laboratories for distributing the open-source MD code LAMMPS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu-Qiu Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, LJ., Yang, XQ. & Zhai, PC. Uniaxial tension of crystalline CoSb3 with holes of different sizes: a molecular dynamics study. Appl. Phys. A 128, 77 (2022). https://doi.org/10.1007/s00339-021-05217-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05217-x

Keywords

Navigation